

Market Announcement

26 September 2023

Bonnie Vale Mineral Resource Update

Highlights:

- Underground Indicated Mineral Resource ounces increased by 40% with 4.6% improvement in grade
- Total underground Indicated and Inferred Mineral Resource ounces increased by 16%
- Overall Indicated and Inferred Mineral Resource ounces at Bonnie Vale including potentially open pitable and historic tails increased by 40%

Western Australia's newest gold producer, Focus Minerals (**ASX: FML**) (**Focus** or the **Company**), is pleased to announce Mineral Resource updates at Bonnie Vale.

Bonnie Vale is part of the Coolgardie Gold Project (**CGP**), which covers 121km² of highly prospective tenements on the outskirts of the Coolgardie township in the Goldfields. The Bonnie Vale underground development is part of the announced mine plan for the CGP (refer to ASX announcements dated 24/10/2022 and 31/03/2023) and provides high-grade and high-value mineralisation with excellent recovery characteristics.

The updated Bonnie Vale Underground Mineral Resource is reported on a dry tonnage basis using 1.5g/t cut off below 315mRL (starting from 75m below surface). It is compared to the 2020 Mineral Resource reported at 1.4 g/t cut off (refer to ASX announcement dated 2/09/2020).

Classification	Tonnage (Kt)	Change Tonnage %	Au Grade (g/t)	Change Grade %	Au Oz	Change Oz %
Indicated	879	+33.5%	8.01	+4.6%	226,300	+39.6%
Inferred	325	-35.3%	2.58	-25.3%	27,000	-51.7%
Total Underground Mineral Resource	1,204	3.7%	6.54	+12.0%	253,300	+16.2%

The new Bonnie Vale Open Pit Mineral Resource is reported on a dry tonnage basis using 0.5g/t cut off to 315mRL (75m below surface).

Classification	Tonnage (Kt)	Au Grade (g/t)	Au Oz
Indicated	978	0.86	27,200
Inferred	731	0.89	20,900
Total Open Pit Mineral Resource	1,709	0.88	48,100

The historic Bonnie Vale tails comprise previously milled Bonnie Vale quartz veins and resemble a quartz sand. The tails material is free dig and does not require crushing or significant grinding. For the purpose of mechanised load/haul and taking into account the material has already been crushed/ground, a cut off of 0.4 g/t is used to discriminate mineable/recoverable volumes. All other isolated mineralisation has been classified as not recoverable or reportable. The resulting Inverse Distance Squared (ID²) Indicated category Mineral Resource estimation is reported on a dry tonnage basis for mineable/recoverable volumes only.

Classification	Tonnage (Kt)	Au Grade (g/t)	Au Oz
Bonnie Vale Tails Indicated	178.6	0.77	4,400
Total Bonnie Vale Tails Mineral Resource	178.6	0.77	4,400

The up-dated total Bonnie Vale Mineral Resource for open pit, underground and tails is tabulated below.

Classification	Tonnage (Kt)	Au Grade (g/t)	Au Oz
Indicated	2,035	3.94	257,900
Inferred	1,057	1.41	47,900
Total Open Pit, Underground and Tails Mineral Resources	3,092	3.08	305,800

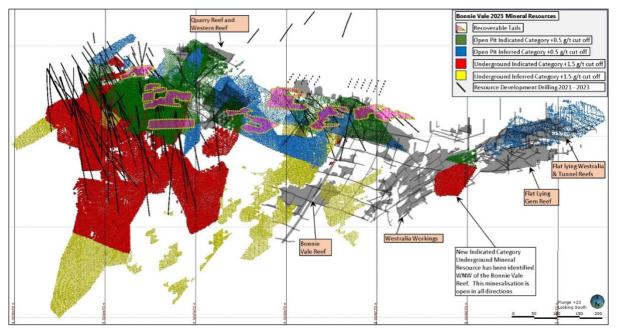


Figure 1: Oblique view looking down toward the south showing Bonnie Vale: Open Pit, Underground and Tails Mineral Resource block model centroids coloured as per inset legend. Drill traces (Black lines) for resource development infill drilling completed between 2021 and 2023 are also shown. Historic Bonnie Vale mine workings are labelled and represented by semi transparent grey polygons.

Following Mineral Resource updates for Bonnie Vale, the Company's total Measured, Indicated and Inferred Mineral Resources at Coolgardie comprise:

Classification	Tonnage (Mt)	Au Grade (g/t)	Au Contained Moz
Total Measured	4.4	1.5	0.205
Total Indicated	27.2	1.9	1.641
Total Inferred	16.0	2.0	1.003
Total Mineral Resource	47.5	1.9	2.849

Commenting on the Mineral Resource update, Focus Minerals' Executive Chairman, Mr Wanghong Yang, said:

"The updated Mineral Resources enable the next phase of economic assessment and advanced mine design. These developments will lead to updated Ore Reserves estimates and provide the basis for submissions for mine approvals."

Bonnie Vale

Bonnie Vale is located 9km north of the Company's CGP Three Mile Hill Mill (TMHM) and is accessed by sealed roads. It is situated on Mining Licences M15/595, M15/877 and Prospecting Licence P15/5159, which are 100% owned by Focus.

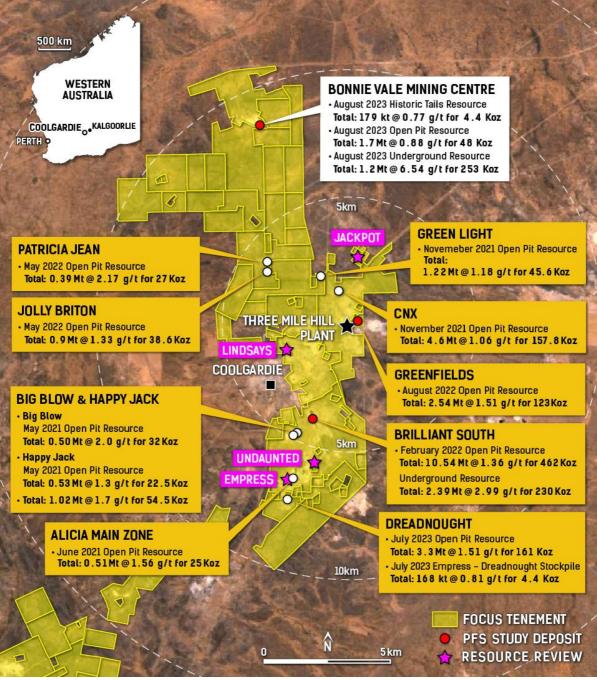


Figure 2: Key Coolgardie Gold Project deposits and Mineral Resources

Comparison of the 2020 and 2023 Bonnie Vale Mineral Resources

				2020			1 7		2023			Difference			
		S	Tonnes	Grade	Ounces			Tonnes	Grade	Ounces		Tonnes	Grade	Ounces	
		Category	Kt	g/t	Koz	Cut Off	Category	Kt	g/t	Koz	Cut Off	Kt	g/t	Koz	Cut Off
Barris Mala Linda and Balan	Measured		-												
Bonnie Vale Underground Below	Indicated	JORC 2012	658.3	7.66	162.13	1.4 g/t	JORC 2012	878.8	8.01	226.31	1.5 g/t	220.4	0.35	64.18	0.1 g/t
315mRL	Inferred		503.3	3.46	55.98			325.6	2.58	27.04		-177.6	-0.88	-28.94	
Total Bonnie Vale Underground		JORC 2012	1,161.6	5.84	218.11	1.4 g/t	JORC 2012	1,204.4	6.54	253.35	1.5 g/t	42.8	0.70	35.24	0.1 g/t
Total Bonnie Vale Underground								A. 64							
Mineral Resource Percent Change												3.7%	12.0%	16.2%	
	Manageral	r				-								1	
Sonnie Vale Open Pit Above 315mRL	Measured Indicated		-	•	-		JORC 2012	- 977.8		-	0.5 a/t	- 977.8		-	0.5 a/t
to surface	Inferred	-	-		-	ŝ.	JONC 2012	731.1	0.86	27.17 20.91	0.0 y/i	731.1	0.86	27.17 20.91	0.0 y/i
Total Bonnie Vale Open Pit	Interred	-	•		-		1000 0010				0.5 q/t				0.5 q/t
Percent Increase in Bonnie Vale			-		-		JORC 2012	1,708.9	0.88	48.08	0.3 g/t	1,708.9	0.88	48.08	0.3 g/t
													45.00		
Mining Centre Mineral Resources												147.1%	15.0%	22.0%	
	Measured		×.												
Bonnie Vale histroric tails	The second second second second second second	1					and the second second second second	103323793	0.77	200000	020200121	·	the state to choose the		0.4 g/t
	Indicated		-				JORC 2012	178.6	0.77	4.41	0.4 g/t	178.6	0.77	4.41	0.18/5
Bonnie Vale histroric tails	Indicated Inferred		-				JORC 2012	- 178.6		4.41	0.4 g/t	- 178.6	0.77	4.41	0.19
Bonnie Vale histroric tails			-				JORC 2012 JORC 2012				0.4 g/t 0.4 g/t			-	0.4 g/t
			-		-					-					
Total Bonnie Vale Historic Tails Percent Increase in Bonnie Vale		-			-					-					
Total Bonnie Vale Historic Tails Percent Increase in Bonnie Vale	Inferred				-					-		- 178.6	- 0.77	- 4.41	
Total Bonnie Vale Historic Tails	Inferred	10BC 2012	-	•	-	14 9/4	JORC 2012	- 178.6	- 0.77	- 4.41	0.4 g/t	- 178.6 15.4%	- 0.77 13.2%	- 4.41 2.0%	
Total Bonnie Vale Historic Tails Percent Increase in Bonnie Vale Mining Centre Mineral Resources	Inferred Measured Indicated	JORC 2012	- - 658.3	- - - 7.66	-	1.4 g/t		- 178.6 - 2,035.2	- 0.77 - 3.94	- 4.41 - 257.89	0.4 g/t	- 178.6 15.4%	- 0.77 13.2%	- 4.41 2.0%	0.4 g/t
Total Bonnie Vale Historic Tails Percent Increase in Bonnie Vale Mining Centre Mineral Resources Total Bonnie Vale Mining Centre Mineral Resources Updated	Inferred	JORC 2012	-	•	- - 162.10 56.00	1.4 g/t	JORC 2012	- 178.6	- 0.77	- 4.41	0.4 g/t	- 178.6 15.4%	- 0.77 13.2%	- 4.41 2.0%	0.4 g/t 0.4, 0.5 & 1 g/t
Total Bonnie Vale Historic Tails Percent Increase in Bonnie Vale Mining Centre Mineral Resources Total Bonnie Vale Mining Centre	Inferred Measured Indicated		- 658.3 503.3	- - - 7.66			JORC 2012	- 178.6 - 2,035.2 1,056.7	- 0.77 - 3.94	- 4.41 - 257.89	0.4 g/t 0.4, 0.5 & 1.5 g/t 0.4, 0.5	- 178.6 15.4%	- 0.77 13.2%	- 4.41 2.0%	0.4 g/t 0.4, 0.5 & 1 g/t 0.4, 0.5
Total Bonnie Vale Historic Tails Percent Increase in Bonnie Vale Mining Centre Mineral Resources Total Bonnie Vale Mining Centre Mineral Resources Updated Total Bonnie Vale Mining Centre	Inferred Measured Indicated	JORC 2012 JORC 2012	- 658.3 503.3	- - 7.66 3.46	56.00		JORC 2012	- 178.6 - 2,035.2 1,056.7	- 0.77 - 3.94 1.41	- 4.41 - 257.89 47.95	0.4 g/t 0.4, 0.5 & 1.5 g/t	- 178.6 15.4%	- 0.77 13.2% 2.16 -0.45	- 4.41 2.0% 95.76 -8.03	0.4 g/t 0.4, 0.5 & 1 g/t

Bonnie Vale Mining Centre Resource Updates

Table 1 comparison of 2020 and 2023 Bonnie Vale Mineral Resources

Past production and Location of the Quarry Lode

The Bonnie Vale Quarry Lode is a discovery announced in January 2015. The Quarry Lode discovery comprises a set of mainly north-northeast dipping mineralised veins not previously mined. These veins occur along strike to the east southeast of the Bonnie Vale Reef and are actually a continuation of this high grade reef (Figure 3).

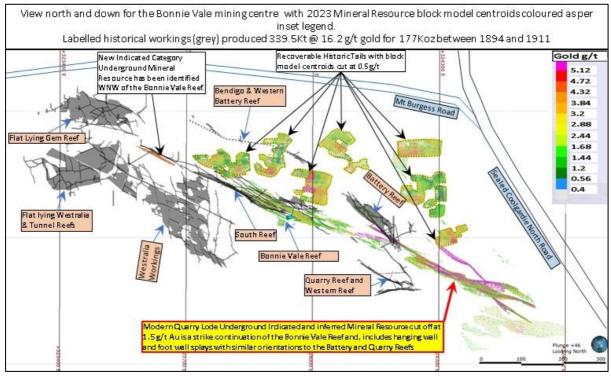


Figure 3: View north and down with partially transparent satellite imagery over 3D historic mine development (grey polygons) with labelled features and 2023 Bonnie Vale underground Mineral Resource block model centroids coloured for gold g/t as per inset legend.

The Bonnie Vale mining centre was a significant historic underground gold producer from 1894 to 1911. Production was sourced from several high-grade veins (not including the Quarry Lode vein system) with recorded production of 339.5Kt @ 16.2 g/t for 177Koz. The deepest historic workings extended to a depth of 270m below surface.

Bonnie Vale Geology and Structure

Mineralisation at Bonnie Vale is hosted by brittle ductile laminated quartz veins that overprint earlier ductile shear zones within the Bonnie Vale Granodiorite. The Bonnie Vale granodiorite has intruded the core of an F3 fold and has been overprinted by late D3 deformation and mineralisation.

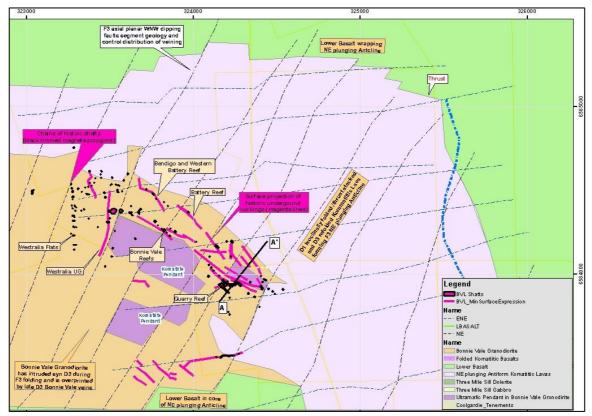


Figure 4: Plan view for the Bonnie Vale area with simplified geology showing the Bonnie Vale Granitoid intruding the core of an F3 anticline. The surface position of high-grade veins are marked by magenta polylines. The Bonnie Vale mineralised quartz veins are hosted within the Bonnie Vale Granodiorite

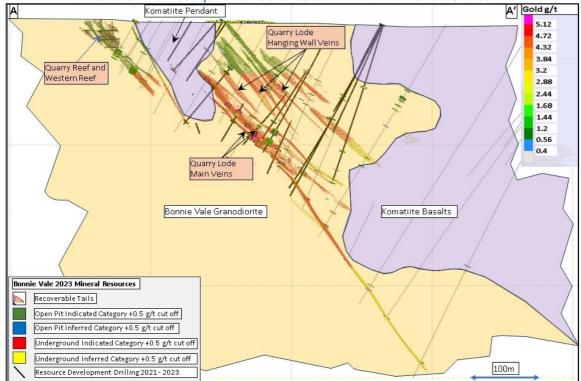


Figure 5: View WNW for NE strike 40m width cross section through the Quarry Lode with detailed geology (Location of section shown in Figure 4). The 2023 Indicated + Inferred category block model centroids cut at 0.5 g/t are coloured as per inset legend. Drilling assays are cut at 0.5 g/t and coloured as per inset legend. Holes drilled between 2021 and 2023 have thick black traces. Bonnie Vale mineralised veins are hosted by the Bonnie Vale Granodiorite and rarely extend into the Komatiite. The Bonnie Vale Granodiorite has intruded into the core of an F3 anticline and locally digested the komatiite leaving isolated pendants of komatiite.

The Quarry Lode extends west northwest over a 500m strike and extends to at least 480m depth below surface. The thickness of the Quarry Lode main veins varies from ~1m to +10m. The upper part of the main veins between 75m and 150m below surface dip at about 38-40 degrees to the NE and have average thickness of 4-8m. Below about 150m depth the main vein continues at about 45 degrees NE dip and is in general 1-2m thick. Hanging wall veins form in several orientations and vary in width between 1 and 6m.

In 2023, Mineral Resource modelling and estimation has been extended to the greater Bonnie Vale mining area. The comprehensive review has identified several areas with resource development potential. One of these areas is located WNW and along strike of the Bonnie Vale Reef. High grade Indicate category Mineral Resource is now estimated in this area (Figures 1 and 3). This mineralisation was last drilled during 2015 and is open for extension.

Bonnie Vale Mineral Resource development

Focus last updated Bonnie Vale's Mineral Resource in 2020 (refer to ASX announcement dated 2/09/2020). Since the last Mineral Resource update Focus has completed extensive exploration and resource development RC, DD, geotechnical and hydrogeological drilling at Bonnie Vale.

A particular focus of the drilling has been conversion of Inferred Mineral Resources areas of the Quarry Lode/hangingwall lodes to Indicated category Mineral Resources. In this regard the quantity of underground Mineral Resource ounces in the Inferred category has been reduced by 28.9 Koz (51.7%) while the Indicated category Mineral Resource ounces have increased by 61.2Koz (39.6%).

Resource development has been progressed over several stages of drilling to ensure that the programs were targeted steps rather than a full drill out. A key part of this staged program has been completion of a network of oriented diamond core drillholes over the Quarry Lode rather than just at depth. Below 120m depth from surface (265mRL) a network of oriented diamond core has been completed throughout the Quarry Lode/hangingwall lodes at a general spacing of 40m x 60m in shoots and 50m x 70m in periphery areas. This new diamond drilling in conjunction with significant RC infill has brought the general drill spacing down to a general 40m x 40m and 30m x 20m within shoots.

The increased data quality (Table 2) and drilling density (Table 3) has enabled the Quarry Lode and hangingwall lodes to be rebuilt resulting in conversion of Inferred category mineralisation to Indicated status. Furthermore, the resource is improved by tightening the drill spacing in areas containing high metal content shoots and high-grade domains.

		RC holes/		DD holes/		Total individual	Total RC + DD Dilling
Year	Drilling Type	Precollars	RC metres	tails	DD Metres	holes	Metres
2021	RC - Piezo hyrdo geology	3	336.0			3	336.0
Т	otal 2021 Drilling	3	336.0			3	336.0
2022	Resource Development	14	1,850.1	8	1,347.6	14	3,197.7
2022	RC/DD Geotech	3	256.9	4	440.7	4	697.6
	RC - Piezo hyrdo geology and						
2022	Resource Development	3	600.0			3	600.0
Т	otal 2022 Drilling	20	2,707.0	12	1,788.3	21	4,495.3
2023	UG Resource Development	59	8,232.2	19	2,645.8	59	10,878.0
2023	OP Resource Development	33	2,279.0			33	2,279.0
2023	RC Tails Grade Control	234	700.0			234	700.0
2023	DD Geotech			4	445.5	4	445.5
Т	otal 2023 Drilling	326	11,211.2	23	3,091.3	330	14,302.5
Total 2	2021 - 2023 Drilling	349	14,254.2	35	4,879.6	354	19,133.8

Table 2 Summary details of drilling at Bonnie Vale since the September 2020 Mineral Resource update

Mineral Resource	Depth Range	DD hole Spacing	RC + DD Hole Spacing
Bonnie Vale Tails	Surface stockpile 2.5 to _5m thick	NA	10m x 10m
Bonnie Vale Open Pit indicated Mineral Resources	Surface to 70m (315mRL)	6 holes 80m spaced	20m x 30m
Bonnie Vale Open Pit inferred Mineral Resources	Surface to 70m (315mRL)	NA	60m x 7 0m
Bonnie Vale Underground indicated Mineral Resources	Below 315mRL to 40mRL	40m x 60m in shoots to 50m x 70m in periphery	20m x 30m in shoots, generally 40m x 40m and 50m x 60m in periphery
Bonnie Vale Underground inferred Mineral Resources	Below 315mRL to -100mRL	60m × 7 0m	Parts at 40m × 40m and in general 60 × 70m

Table 3 Summary of drill spacing ling at Bonnie Vale used for the 2023 Mineral Resource update

The completed resource development at Bonnie Vale has enabled compilation of:

- Potentially open pitable Mineral Resources within 75m of surface (Figure 1) and,
- Expanded underground Indicated category Mineral Resources below 315mRL now including historic mining areas such as the west north west continuation of the Bonnie Vale Reef (Figures 1 – 3) and,
- Mineral Resource estimation for minable/recoverable parts of historic mine tails stockpiles following 10m x 10m RC grade control drilling (Figures 1, 6 and 7)

The resource development programs have been extended to feasibility drilling to assist with follow up advanced mine design, economic assessment and permitting studies. Key components of this work include:

- 6 vertical infill RC holes that were converted to piezometers for hydrogeological assessment.
- A network of 27 RC/DD holes providing oriented core in mineralisation and surrounding rock
 mass. These holes have been geotechnically logged and in places geotechnically sampled to
 determine geotechnical domains throughout the Quarry Lode. Furthermore, core was provided
 for far field stress test work which will assist with geotechnical assessment and follow up design.
- 8 targeted DD holes from surface were drilled targeting proposed underground mine infrastructure such as the proposed boxcut to inform advanced mine design and mine permitting.

All RC drilling since the September 2020 Mineral Resource update has been sampled on a 1m basis direct from the rig mounted cone splitter. Holes have been drilled dry. Any holes that have become wet have been either redrilled using diamond core or tailed using diamond core. The entire length of RC holes has been sampled and assayed.

Four-metre composites have been used for some RC holes drilling massive granodiorite intervals away from the main veins. Where composite samples have returned better than 0.2 g/t assay results, 1m split samples have been analysed for the entire interval of the composite sample.

Diamond drilling has mostly comprised NQ2 sized oriented core. However, select holes have been collared from surface using PQ3 and downsizing to HQ3 size. Diamond core sampling is completed after logging and photography using an Almonte saw to collect half core samples. Sample intervals are over a minimum of 20cm and maximum of 1.2m and generally at 1m. Geological sampling is employed such that suspected mineralised veins are sampled respecting the down hole location of the veining. Select intervals of diamond core holes have been sampled targeting logged veins and peripheral shears. Sampled intervals are reviewed with respect to results and modelling in Leapfrog to ensure all mineralised structures are sampled.

A limited amount of diamond core has been taken after logging and before sampling for geotechnical test work. These intervals have been carefully documented. Post test work the material has been returned and whole core sampled for gold analysis.

All samples have been analysed for total gold using 50g fire assays method at Jinnings Lab in Kalgoorlie with appropriate QA/QC, review and database verification (See Table 1 at end of announcement).

Mineral Resource Estimation

The Bonnie Vale vein system has been modelled using leapfrog to build on and expand the previous model. Where appropriate hangingwall wireframes have been rebuilt taking into account greatly expanded oriented diamond drill coverage. High grade sub-domains have been employed to limit the potential for very high grades to influence adjacent lower grade mineralisation included within the resource wireframes. These high-grade domains have been targeted with additional drill density down to 20m x 30m to confirm shoot geometry and provided sufficient sample data for resource estimation.

The updated Bonnie Vale Underground Mineral Resource is reported on a dry tonnage basis using 1.5g/t cut off below 315mRL (starting from 75m below surface). It is compared to the 2020 Mineral Resource that was reported at 1.4 g/t cut off (refer to ASX announcement dated 2/09/2020).

Classification	Tonnage (Kt)	Change Tonnage %	Au Grade (g/t)	Change Grade %	Au Oz	Change Oz %
Indicated	879	+33.5%	8.01	+4.6%	226,300	+39.6%
Inferred	325	-35.3%	2.58	-25.3%	27,000	-51.7%
Total Underground Mineral Resource	1,204	3.7%	6.54	+12.0%	253,300	+16.2%

The Bonnie Vale vein system has been estimated using Ordinary Kriging and appropriate top cuts (refer to Table 1 at the end of the announcement). The new Bonnie Vale Open Pit Mineral Resource is reported on a dry tonnage basis using 0.5g/t cut off to 315mRL (75m below surface).

Classification	Tonnage (Kt)	Au Grade (g/t)	Au Oz
Indicated	978	0.86	27,200
Inferred	731	0.89	20,900
Total Open Pit Mineral Resource	1,709	0.88	48,100

A total of 234 vertical grade control RC holes were completed on a 10m x 10m pattern for 700m targeting historic Bonnie Vale tails. The grade control has been 1m sampled and fire assayed. The historic Bonnie Vale tails comprise previously milled Bonnie Vale quartz veins and resemble a quartz sand.

Historic mine tails at Bonnie Vale are located in a variety of stockpiles, remnant stockpiles and later leach vats related to more recent attempts at tails processing. The main vats and stockpiles at Bonnie Vale have been surveyed for quantity estimations of 266.9 Kt (79% of historic mine tails).

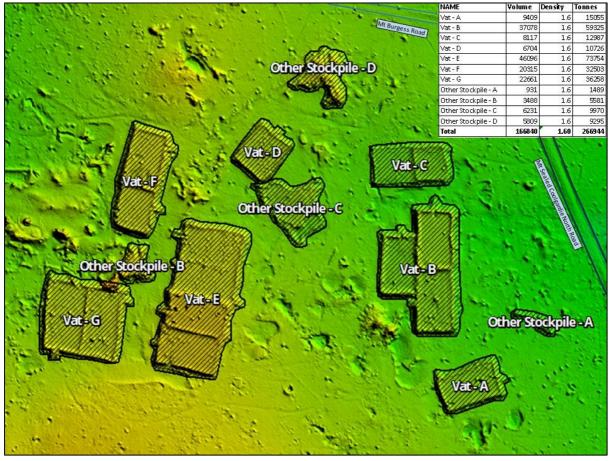


Figure 6: Plan view of shaded digital elevation map with the main historic Bonnie Vale Tails deposits labelled with summary table for tonnage. The inset table provides details of volumes calculated using high resolution survey.

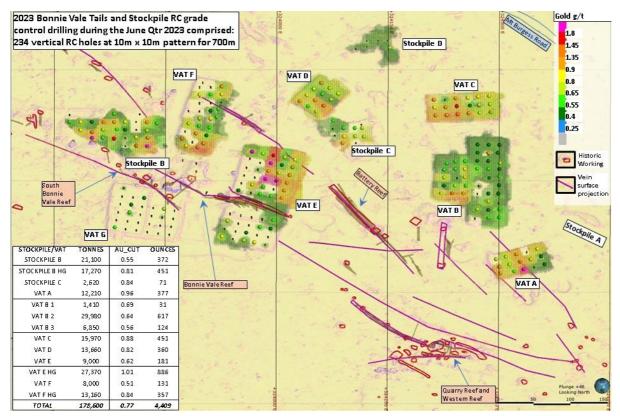


Figure 7: View north and down of 40m deep flitch from surface. The location of 2023 RC grade control drilling targeting historic Bonnie Vale tails is shown. Block Model centroids for mineable/recoverable tails that exceed 0.4 g/t are coloured as per inset legend. Significant intersections calculated using 0.5 g/t cut off are shown by spheres coloured for intersection gold grade as per the inset legend. Historic tails vats and stockpiles have been labelled and summary indicated category recoverable Mineral Resources are detailed in the inset table. The recoverable portions of the tails were subdivided to include where appropriate higher-grade domains in case mining selectivity is required. It is noted that not all tails have been drill tested and further work is warranted at a later stage.

The tails material is free dig and does not require crushing or significant grinding. It is proposed to blend mineable/recoverable volumes of these tails with primary ore from CGP mine sources such that the material is processed without displacing primary mine to mill tonnage.

It is important to note that stockpiles are mined to a metal content rather than a simple grade cutoff. As such mineable/recoverable volumes may include some internal dilution within consistently mineralised volumes. For the purpose of mechanised load/haul and taking into account the material has already been crushed/ground a cut off of 0.4 g/t is used to discriminated mineable/recoverable volumes. In addition, where appropriate higher-grade domains have also been estimated in case mining requires more selectivity. All other isolated mineralisation has been classified as not recoverable or reportable. The resulting Inverse Distance squared (ID²) Indicated category Mineral Resource estimation is reported on a dry tonnage basis for mineable/recoverable volumes only.

The Bonnie Vale Tails Indicated Mineral Resources are reported as HG domain for recoverable tails exceeding 0.8 g/t and Lower grade domain with arrange between 0.5 and 0.8 g/t.

Classification	Tonnage (Kt)	Au Grade (g/t)	Au Oz
Bonnie Vale Tails High Grade Domain	102.3	0.9	2,950
Bonnie Vale Tails Low Grade Domain	76.3	0.6	1,450
Total Bonnie Vale Tails Mineral Resource	178.6	0.77	4,400

Interim gold recovery met testwork has been received for the Bonnie Vale Tails. Two composite samples were selected to be representative of higher grade and lower grade domains. The samples have been compiled for 2023 10m x 10m RC grade control completed over Bonnie Vale tails. Recovery testwork has been run to simulate processing at the Three Mile Hill plant. Gold recovery for the tails material ranges from 72 - 78% and slightly better for higher grade material. Further assessment will be completed when final results have been received.

A24706 - Focus Mineral Limited														
GRAVITY LEACH TESTWORK SUMMARY Source Head Grade (g/t) Gravity Au Extraction (%)												Reag	and the second se	
Sample ID		Test #	Grind Size P80 (µm)		Au	2-hr	4-hr	6-hr	8-hr 24-hr		Au Tail Grade (g/t)	(kg NaCN	j/t) Lime	
				Assay	Calc.	(%)								
FC235966 HG	BVL HG Tails	KW2058	120	0.86/1.37	1.21	36.35	65.59	78.18	78.18	78.18	78.18	0.27	0.62	0.92
FC235967 LG	BVL General LG Tails	KW2059	120	0.57/0.62	0.55	28.70	60.42	60.42	72.80	72.80	72.80	0.15	0.59	0.76

The release of this ASX announcement was authorised by Mr Wanghong Yang, Executive Chairman of Focus Minerals Ltd.

For further information please contact:

Alex Aaltonen

General Manager Exploration Focus Minerals Ltd. Phone: +61 8 9215 7888 Email: info@focusminerals.com.au

For media and investor enquiries please contact:

Nicholas Ong Company Secretary Focus Minerals Ltd. Phone: +61 8 9215 7888 Email: info@focusminerals.com.au

About Focus Minerals Limited (ASX: FML)

Focus Minerals is Western Australia's newest gold producer and focused on delivering shareholder value from its 100%-owned Coolgardie Gold Operation and Laverton Gold Project, in Western Australia's Goldfields.

Focus is committed to delivering shareholder value from the Coolgardie Gold Operation, a 121km² tenement holding that includes a 1.2Mtpa processing plant at Three Mile Hill, with commencement of mining activities in mid-2023. A new Life of Mine plan with 7-year production for 402,000oz of gold was announced to the ASX on 24 October 2022.

The Laverton Gold Project covers 384km² area of highly prospective ground that includes the historic Lancefield and Chatterbox Trend mines. Focus' priority target is to confirm sufficient gold mineralisation at the Beasley Shear Zone, Lancefield-Wedge Thrust, Karridale and Burtville to support a Stage 1 production restart at Laverton. In parallel, Focus is working to advance key Laverton resource growth targets including Sickle, Ida-H and Burtville South. Focus has delivered first results from a progressive Pre-Feasibility Study (Pre-Tax NPV_{5.0%} A\$132M) and is advancing study work utilising Laverton's expanded Mineral Resource position.

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Mr Alex Aaltonen, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Aaltonen is an employee of Focus Minerals Limited. Mr Aaltonen has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of *the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.*

The Mineral Resource estimates were undertaken by Ms Hannah Kosovich, an employee of Focus Minerals. Ms Hannah Kosovich is a member of Australian Institute of Geoscientists and has sufficient experience to qualify as a Competent Person as defined in the 2012 Edition of *the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.*

Mr Aaltonen and Ms Hannah Kosovich consent to the inclusion in the report of the matters based on the information in the form and context in which it appears.

ASX Listing Rule 5.19.2

The Bonnie Vale Underground is included in the CGP life of mine plan. The update Mineral Resource has improved in both the quantity of indicated Mineral Resource contained gold and grade. Bonnie Vale underground Mineral Reserves will not be updated until advanced review/economic assessment is completed. Therefore, the material assumptions underpinning the production target, or the forecast financial information derived from the LOM plan continue to apply and have not materially changed.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	 This report relates to results from Reverse Circulation (RC) drilling and diamond core drilling. The information of sampling techniques below applies to the drill holes drilled by Focus Minerals (FML) only. RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a 1m or 4m composite samples basis, with sampling width geologically determined. Composite 4m samples were collected manually using spear sampling of green bags and 1m samples were generated off the rig mounted cyclone mounted cone splitter. Where the RC composite samples returned an assay value of 0.2g/t Au or greater, the 1m cone-split samples were then submitted for analysis. When visible gold was observed in RC chips, this sample was then flagged by the supervising geologist for the benefit of the laboratory. RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg. The splitter was levelled at the beginning of each hole using a bullseye level. At the assay laboratory all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm. The samples were then prepared for
	 fire assay. The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of mineralisation and/or alteration. Sample widths varied between a minimum of 0.2m and a maximum of 1.2m. The core was cut in half using an Almonte automatic core saw guided by the BOH core orientation line or in the absence of an orientation line the core was reassembled in the tray and a "cut-line" drawn down the axis of the core. Half-core samples submitted to Jinnings Kalgoorlie assay laboratories for fire assay analysis by a 50g fire assay with an ICP-OES or AAS Finish.
	 Sampling of the vertical historic Bonnie Vale tails grade control RC holes was via a cone splitter off the grade-control L8 drill rig at 1m intervals into pre-numbered calico bags.
	 Matador Exploration Pty Ltd (Matador) collected drill cuttings at 1m intervals and passed through a trailer-mounted cyclone and stand-along riffle splitter to provide a 4-6kg split sample and bulk residue for logging. 4m composites were taken by spearing the residue and submitted for assay and where results were returned above 0.2g/t, the 1m riffle split samples were submitted for analysis. Coolgardie Gold NL (CGNL) does not state sampling techniques except to say samples were 4m composites, which were resampled at 1m when assays returned 0.2g/t Au or greater.
	 Magnet Metals submitted 1m samples or 2m - 4m composites for analysis by 50g Fire Assay with AAS finish. WMC drilled shallow holes and submitted 1m samples for analysis by unknown
	 Mile annot online indice and oblimited in outspice for analytic by antiform methods. Associated Resources Management (ARM) drilled 1 deep diamond hole. Quarter core samples were submitted for fire assay based on geological intervals. Five samples were screen fire assayed for coarse gold.
Drilling techniques	• FML drilling was completed using an RC face sampling hammer or NQ2/HQ size diamond core. Drill core was oriented by the drilling contractor using an Ezy-mark or electronic system were core conditions allowed. Most holes were surveyed upon completion of drilling using a north-seeking gyroscope. The holes were surveyed initially open-hole and in later programs within the rods. Otherwise, a single shot

Criteria	Commentary
	 Eastman camera downhole survey was used. The historic Bonnie Vale tails grade control RC drilling was completed using an Atlas Copco L8 rig using a 5 ¼ inch diameter Aircore drill bit to improve sample recovery. Matador used RC drilling methods and surveyed the hole using Electronic Multi-Shot (EMS) system. Other companies state using an RC rig. ARM used an RC pre-collar from surface to 78m, HQ core to 293m and then NQ diamond core to EOH at 450m.
Drill sample recovery	 FML Sample recovery was recorded by a visual estimate during the logging process. All RC samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust. Study of sample recovery versus gold grade does not indicate a bias in the gold grade caused by any drop in sample recovery. Diamond core sample recovery was measured and calculated (core loss) during the logging process, generally there was excellent recovery. ARM state only 0.2m of core loss and a recovery of 99.95% from the 1 diamond hole.
Logging	 The information of logging techniques below applies to the drill holes drilled by FML only. All core samples were oriented, marked into metre intervals and compared to the depth measurements on the core blocks. Any loss of core was noted and recorded in the drilling database. All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present. All diamond core was logged for structure, and geologically logged using the same system as that for RC. The logging information was recorded into acQuire format using a Toughbook notepad and then transferred into the company's drilling database once the log was complete. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present. Diamond core was photographed wet and dry one core tray at a time using a standardised photography jig. Samples from RC holes were archived in standard 20m plastic chip trays and in later programs photographed up to 4 chip trays per photo. The entire length of all holes is logged. Historical holes have been logged at 1m intervals to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present for RC samples.
Sub-sampling techniques and sample preparation	 The information of sub-sampling and sample preparation below applies to the drill holes drilled by FML only. Core samples were taken from half core, cut using an Almonte automatic core saw. The remainder of the core was retained in core trays tagged with a hole number and metre mark. RC samples were cone split to a nominal 2.5kg to 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag. Where possible all RC samples were drilled dry to maximise recovery. The use of a booster and auxiliary compressor provide dry sample for depths below the water table. Sample condition was recorded (wet, dry, or damp) at the time of sampling and recorded in the database. The samples were collected in a pre-numbered calico bag bearing a unique sample ID. Samples were crushed to 75µm at the laboratory and riffle split (if required) to a maximum 3kg sample weight. Gold analysis was determined by a 30g to 50g fire assay with an ICP-OES or AAS Finish.

Criteria	Commentary
	 The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion. Prior to 2016 FML inserted 3 standards and took 5 duplicates for every 100 samples. Field duplicates were collected from the cone splitter on the rig for RC samples at a frequency of one duplicate every 20 samples, excluding the 100th sample as this was a standard. Diamond core field duplicates were not taken. From 2016 - 2018 FML inserted 1 standard every 25th sample, while the 1 duplicate every 20th sample remained unchanged from previous years. From 2018 a standard is inserted every 20th sample and all batches delivered to the lab have at least three standards in them. RC field duplicate samples are taken from the second sample shoot on the cone splitter. Rather than individual field duplicates at a regular spacing, whole holes are duplicate sampled with a frequency rate not less than 1 in every 20 holes drilled. Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out. The sample sizes were considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration. Limited reporting of historic sample preparation exists in the WAMEX reports. Matador RC samples were drilled dry and cone or riffle split to achieve a 4-6kg sample weight. Certified standards were inserted every 20 samples. At the laboratory either a blank or a certified standard were inserted every 20 samples and a duplicate was taken every 10 samples. ARM submitted ¼ core samples for fire assay. Five samples were submitted for screen fire assay to determine coarse gold component.
Quality of assay data and laboratory tests	 The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample. No geophysical tools, spectrometers or handheld XRF instruments were used. The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances. Matador samples were submitted for analysis for gold by standard 30g fire assay with the finish by Atomic Absorption (AA) with a 0.01g/t detection limit. CGNL analysis methods and QA/QC checks are unknown. Magnet Minerals used duplicates for check assays.
Verification of sampling and assaying	 Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process. Normally if old historic drilling was present, twinned holes are occasionally drilled to test the veracity of historic assay data; however, no twinned holes were drilled during this program. Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project. No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations. Historic holes were validated against paper copies and WAMEX reports where possible.
Location of data points	• FML drill collars were surveyed after completion, using a DGPS instrument. All drill core was oriented by the drilling contractor using an Ezy-mark or electronic system. Most holes were surveyed upon completion of drilling using a north-seeking gyroscope and holes were surveyed either open-hole or within the rods. Otherwise, a single shot

Criteria	Commentary										
	 The shallow vertical surveyed. All coordinates and FML utilises Landga internally produced DGPS base station Matador has not sta Electronic Multi-Sho 	nted the collar survey metho	one 51 grid system. aphic maps and con by the mining survey d, down-hole surve	tours as well as r teams utilising							
Data spacing and distribution	 stage that the drill tag Drilling varied from tails designed to test 	the Coolgardie prospects v arget currently existed. wide spaced exploration RC at mineralisation at depth an impleted 2021 to 2023 the D comprises:	drilling to precisely d along strike.	r placed diamond							
	Mineral Resource	Depth Range	DD hole Spacing	RC + DD Hole Spacing							
	Bonnie Vale Tails	Surface stockpile 2.5 to _5m thick	NA	10m x 10m							
	Bonnie Vale Open Pit indicated Mineral Resources	Surface to 70m (315mRL)	6 holes 80m spaced	20m × 30m							
	Bonnie Vale Open Pit infered Mineral Resources	Surface to 70m (315mRL)	NA	60m x 70m							
	Bonnie Vale Underground indicated Mineral Resources	Below 315mRL to 40mRL	40m x 60m in shoots to 50m x 70m in periphery	20m x 30m in shoots, generally 40m x 40m and 50m x 60m in periphery							
	Bonnie Vale Underground infered Mineral Resources	Below 315mRL to -100mRL	Parts at 40m x 40m and in general 60 x 70m								
Orientation of data in relation to geological structure	 historical data and c Drill holes were gen optimised for drill ca 	ed based on known geologic cross-sectional interpretation perally oriented at right angle apabilities and the dip of the	n. es to strike of the ma ore body.	ain veins, with dip							
Sample security	 All samples were reconciled against the sample submission with any omissions or variations reported to FML. All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel. Historic sample security is not recorded. 										
Audits or reviews	part of a database a the QA/QC intervals	g techniques was carried ou amalgamation project. Their s to bring them into line with of standards and duplicate. mbering sequence.	only recommendati the FML Laverton s	ion was to change system, which uses							

Section 2 Reporting of Exploration Results

Criteria	Commenta	ry											
Mineral tenement and land tenure status	or its sub standing. • The Malin	 or its subsidiary companies Focus Operations Pty Ltd. All tenements are in good standing. The Malinyu Ghoorlie 2017 Claim cover the majority of the Coolgardie tenure. At this stage no Coolgardie claims have progressed to determined status. 											
Exploration done by other parties	(Westrali	• Bonnie Vale is the site of a number of historic workings including the "Varischetti Mine" (Westralia). Modern exploration has been conducted by Coolgardie Gold NL, Gold Mines of Coolgardie and FML.											
Geology	ultramafi of the ma carbonat >400m) o The know and north between	c to the northeast a nin vein system. Th e altered komatiitic guartz reefs which i vn reefs have a vai n east within the gra 40 to 60 degrees.	eposit is dominated by the Bonnie and a pendant of ultramafic to the s is ultramafic has been logged as va lavas. Mineralisation is hosted with range in thickness from centimetre riety of orientations with most dippin anodiorite and close to its margins.	outhwe ariably hin larg scale t ng to th	est in th sericite ge (strik to seve ne north	ne footwal e-chlorite- ke lengths ral metres h northeas	 S.						
Drill hole	Historica	lly drilled holes WA	MEX reference tabulated below:										
Information	Company	I	WAN Repo Num	ort A-	WAMEX Report Date								
			BVC077	140)52	Jul-84							
	WMC	BVC085,	162	231	Apr-85								
	WINC	BVC119,	BVC119, BVC120, BVC121, BVC123 16449		149	Apr-85							
	MAGNET G	BVRC01, BVR	C03, BVRC04, BVRC08, BVRC09	20711		Apr-87							
	ARM		BVDDH02	27650		Oct-88	_						
		EHC001, EHC002,	277	787	May-89								
		EHC015, EHC016,	307	781	Jun-90								
		EHC029, EHC030,	33604		Jan-91								
	CGNL		36344		Jun-92								
		ВМС015, ВМС0 ВМС033, ВМС0	37701		Jan-93								
		EHC058, EHC059,	38631		Jun-93								
		BVC135, BVC140,	BVC130, BVC131, BVC132, BVC133, BVC141, BVC142, BVC143, BVC146, BVC149, BVC150, BVC151, BVC152, BVRC153	457	45778 Oo								
	MATADOR	TADOR 05BLC001 72821 Jul-06											
		ly reported FML dri	ill holes at Bonnie Vale. See table b	pelow:									
		ole Number	ASX Release Date										
		031 - 35, 42 NCD036	Results from Coolgardie and Lavert Exploration	ton	30/07,	/2014							

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
	BONC044 - 53 Focus Hits High Grade Gold at Bonnie Vale 8/10/2014
	BONC054 - 56, 58 - 62 Coolgardie Exploration Success 21/01/2015 FCAC00038, 39, FCRB00110 21/01/2015 21/01/2015 21/01/2015
	BONC064, 69 - 71, 79, 81 BONCD065, 66, 68 Coolgardie Exploration Update 24/07/2015
	BONC084 - 87, 89 - 95, 98 - 100, Bonnie Vale Mineral Resource 15/10/2015 102 - 111, 114 - 115 Modelling Commenced 15/10/2015
	BONC119 - 126Update on Exploration at Coolgardie29/04/2016BONCD069 - 74and Laverton29/04/2016
	BONC127, 128, 130 - 134, 136 - 142, 144, 146, 148, 151 - 153, 155, 158 - 161 Exploration Update 22/09/2016
	BONCD069, 70, 71, 72, 73, 74
	BONC160, 162, 163, 164 BONCD075, 77 Coolgardie Operational Update 24/05/2017
	BONCD078, 79 Progress Report 16/01/2018
	BONCD080, 81, 82, 83 Coolgardie Exploration Update 27/04/2018
	BONC165 – BONC169 Mineral Resource Update for Bonnie 30/05/2018 Vale Deposit
	New holes drilled by FML at Bonnie Vale during 2021 - 2023:
	Hole ID Easting Northing RL Dip Azimuth EOH Intersection (MGA 94 Zone 51) (MGA94) (m)
	Bonnie Vale RC significant Intersections calculated at 0.5g/t Au cut off and up to 3m internal dilution
	21BVRC001 - 2.00m @ 0.67g/t from 38m for (GxM 1)
	21BVRC001 - 5.00m @ 0.58g/t from 47m for (GxM 3)
	21BVRC001 324201 6584151 389 -77 346 102 21BVRC001 - 3.00m @ 0.55g/t from 60m for (GxM 2)
	21BVRC001 - 2.00m @ 1.05g/t from 68m for (GxM 2)
	21BVRC001 - 2.00m @ 0.85g/t from 81m for (GxM 2) 21BVRC001 - 1.00m @ 0.62g/t from 101m for (GxM 1)

	ntary						
Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MG/	A 94 Zone 5	1)		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant	nters	ections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
21BVRC002	323596	6584364	389	-83	0	102	
21BVRC003	323856	6584307	389	-79	76	132	21BVRC003 - 3.00m @ 7.94g/t from 89m for (GxM 24)
22BVDD001	324310	6583952	390	-50	20	150	
							22BVRC012 - 1.00m @ 0.55g/t from 82m for (GxM 1)
							22BVRC012 - 1.00m @ 0.81g/t from 88m for (GxM 1)
0001/00010		6504400			055		22BVRC012 - 9.00m @ 0.79g/t from 100m for (GxM 7)
22BVRC012	324431	6584108	386	-60	255	200	22BVRC012 - 3.00m @ 0.51g/t from 116m for (GxM 2)
							22BVRC012 - 7.00m @ 60.27g/t from 146m for (GxM 422)
							22BVRC012 - 1.00m @ 0.58g/t from 164m for (GxM 1)
							22BVRC013 - 1.00m @ 1.47g/t from 118m for (GxM 1)
22BVRC013	324405	6584222	385	-62	207	216	22BVRC013 - 6.00m @ 7.62g/t from 188m for (GxM 46)
							22BVRC013 - 1.00m @ 0.93g/t from 203m for (GxM 1)
							22BVRC014 - 1.00m @ 0.5g/t from 100m for (GxM 1)
22BVRC014	324437	6584112	386	-55	221	162	22BVRC014 - 14.00m @ 24.36g/t from 125m for (GxM 341)
							22BVRC014 - 2.00m @ 1.78g/t from 147m for (GxM 4)
							22BVRC015 - 1.00m @ 0.83g/t from 74m for (GxM 1)
							22BVRC015 - 1.00m @ 0.6g/t from 106m for (GxM 1)
22BVRC015	324446	6584117	386	-66	261	186	22BVRC015 - 2.00m @ 6.17g/t from 134m for (GxM 12)
							22BVRC015 - 6.00m @ 1.25g/t from 158m for (GxM 8)
							22BVRC015 - 6.00m @ 16.39g/t from 177m for (GxM 98)
							22BVRC016 - 1.00m @ 0.58g/t from 2m for (GxM 1)
							22BVRC016 - 1.00m @ 0.79g/t from 66m for (GxM 1)
							22BVRC016 - 1.00m @ 0.85g/t from 72m for (GxM 1)
							22BVRC016 - 3.00m @ 2.23g/t from 77m for (GxM 7)
							22BVRC016 - 1.00m @ 6.95g/t from 107m for (GxM 7)
22BVRC016	324284	6584249	390	-66	187	210	22BVRC016 - 3.00m @ 0.57g/t from 116m for (GxM 2)
							22BVRC016 - 1.00m @ 0.56g/t from 131m for (GxM 1)
							22BVRC016 - 1.00m @ 0.58g/t from 135m for (GxM 1)
							22BVRC016 - 5.00m @ 0.53g/t from 171m for (GxM 3)
							22BVRC016 - 1.00m @ 2.19g/t from 181m for (GxM 2)
							22BVRC018 - 1.00m @ 1.45g/t from 115m for (GxM 1)
220/06010	324468	6504260	204	62	220	270	22BVRC018 - 2.00m @ 0.78g/t from 153m for (GxM 2)
22BVRC018	524408	6584260	384	-03	230	270	22BVRC018 - 1.00m @ 0.54g/t from 173m for (GxM 1)
							22BVRC018 - 1.00m @ 1.12g/t from 251m for (GxM 1)
							22BVRC019 - 1.00m @ 0.9g/t from 53m for (GxM 1)
							22BVRC019 - 15.00m @ 29.61g/t from 109m for (GxM 444)
22BVRC019	324412	6584068	387	-89	193	168	22BVRC019 - 1.00m @ 0.64g/t from 134m for (GxM 1)
							22BVRC019 - 9.00m @ 15.85g/t from 142m for (GxM 143)
							22BVRC019 - 1.00m @ 0.78g/t from 165m for (GxM 1)
							22BVRC020 - 2.00m @ 0.78g/t from 69m for (GxM 2)
							22BVRC020 - 1.00m @ 0.52g/t from 94m for (GxM 1)
							22BVRC020 - 1.00m @ 0.84g/t from 99m for (GxM 1)
							22BVRC020 - 1.00m @ 0.54g/t from 106m for (GxM 1)
22BVRC020	324409	6584135	386	-89	290	222	22BVRC020 - 1.00m @ 0.62g/t from 145m for (GxM 1)
220010020	52-1405	000+100	500	60	230	~~~	22BVRC020 - 1.00m @ 0.53g/t from 156m for (GxM 1)
							22BVRC020 - 1.00m @ 0.86g/t from 161m for (GxM 1)
							22BVRC020 - 2.00m @ 0.71g/t from 175m for (GxM 1)
							22BVRC020 - 1.00m @ 0.57g/t from 184m for (GxM 1)
							22BVRC020 - 8.00m @ 15.92g/t from 190m for (GxM 127)
	-			_			

Hole ID	Fasting	Northing	RL-	Dip	Azimuth	EOH	Intersection
Hole ID	_			ыр			
		A 94 Zone 5			(MGA94)	(m)	
В	onnie Val	e RC signifi	cant	Inter	sections ca	lculated	at 0.5g/t Au cut off and up to 3m internal dilution
							22BVRC021 - 1.00m @ 1.05g/t from 21m for (GxM 1)
							22BVRC021 - 1.00m @ 0.62g/t from 80m for (GxM 1)
							22BVRC021 - 2.00m @ 0.85g/t from 87m for (GxM 2)
							22BVRC021 - 2.00m @ 0.69g/t from 96m for (GxM 1)
22BVRC021	32/30/	6584150	387	-90	185	210	22BVRC021 - 2.00m @ 4.59g/t from 103m for (GxM 9) 22BVRC021 - 3.00m @ 1.05g/t from 116m for (GxM 3)
2204110021	521501	0501150	507		105	210	22BVRC021 - 1.00m @ 0.66g/t from 127m for (GxM 1)
							22BVRC021 - 1.00m @ 0.59g/t from 150m for (GxM 1)
							22BVRC021 - 6.00m @ 2.25g/t from 157m for (GxM 14)
							22BVRC021 - 1.00m @ 0.55g/t from 197m for (GxM 1)
							22BVRC021 - 1.00m @ 2.24g/t from 209m for (GxM 2)
22BVRD001	324152	6584070	390	-45	76	72	22BVRD001 - 1.00m @ 0.59g/t from 58m for (GxM 1)
							22BVRD002 - 1.00m @ 1.26g/t from 40m for (GxM 1)
							22BVRD002 - 1.00m @ 0.64g/t from 45m for (GxM 1)
							22BVRD002 - 15.00m @ 0.95g/t from 60m for (GxM 14)
22BVRD002	221226	6584162	207	E 1	188	210.5	22BVRD002 - 1.00m @ 0.5g/t from 84m for (GxM 1)
ZZDVRDUUZ	524520	0364102	307	-31	100	210.5	22BVRD002 - 2.00m @ 0.51g/t from 87m for (GxM 1)
							22BVRD002 - 1.00m @ 1.03g/t from 96m for (GxM 1)
							22BVRD002 - 3.00m @ 3.09g/t from 124m for (GxM 9)
							22BVRD002 - 0.50m @ 4.48g/t from 193m for (GxM 2)
							22BVRD003 - 1.00m @ 0.94g/t from 31m for (GxM 1)
							22BVRD003 - 1.00m @ 1.12g/t from 42m for (GxM 1)
							22BVRD003 - 1.00m @ 0.7g/t from 79m for (GxM 1)
							22BVRD003 - 17.00m @ 1.75g/t from 99m for (GxM 30)
22BVRD003	324326	6584207	386	-50	204	210.5	22BVRD003 - 1.05m @ 1.15g/t from 126.4m for (GxM 1)
							22BVRD003 - 1.00m @ 0.69g/t from 136m for (GxM 1)
							22BVRD003 - 8.85m @ 1.08g/t from 143m for (GxM 10)
							22BVRD003 - 0.40m @ 0.87g/t from 157.6m for (GxM 0)
							22BVRD003 - 0.80m @ 0.51g/t from 158.6m for (GxM 0)
							22BVRD004 - 0.75m @ 1.45g/t from 111.25m for (GxM 1) 22BVRD004 - 7.00m @ 0.59g/t from 135m for (GxM 4)
							22BVRD004 - 7.00m @ 0.35g/t from 133m for (GxW 4) 22BVRD004 - 3.00m @ 2.34g/t from 164m for (GxW 7)
22BVRD004	324501	6584134	385	-70	237	222.6	22BVRD004 - 1.00m @ 0.78g/t from 176m for (GXM 1)
							22BVRD004 - 1.00m @ 0.57g/t from 170m for (GxM 1)
							22BVRD004 - 3.00m @ 7.78g/t from 199m for (GxM 23)
							22BVRD005 - 5.00m @ 1.29g/t from 112m for (GxM 6)
							22BVRD005 - 2.12m @ 28.26g/t from 174.74m for (GxM 60)
22BVRD005	324512	6584153	385	-51	239	234.4	22BVRD005 - 8.60m @ 0.66g/t from 178.4m for (GxM 6)
							22BVRD005 - 3.85m @ 3.93g/t from 199.4m for (GxM 15)
							22BVRD006 - 1.00m @ 27.94g/t from 40m for (GxM 28)
							22BVRD006 - 1.00m @ 1.15g/t from 87m for (GxM 1)
							22BVRD006 - 2.52m @ 0.59g/t from 134.48m for (GxM 1)
2201/00000	224200	6504242	200	50	1.00	210.4	22BVRD006 - 4.42m @ 0.6g/t from 139.58m for (GxM 3)
22BVRD006	324288	6584243	390	-56	168	210.4	22BVRD006 - 1.34m @ 3.31g/t from 156.4m for (GxM 4)
							22BVRD006 - 1.13m @ 0.69g/t from 167m for (GxM 1)
							22BVRD006 - 1.00m @ 1.56g/t from 174m for (GxM 2)
							22BVRD006 - 2.48m @ 0.78g/t from 189.12m for (GxM 2)
							22BVRD007 - 1.00m @ 1.01g/t from 0m for (GxM 1)
							22BVRD007 - 0.73m @ 1.66g/t from 107.27m for (GxM 1)
22BVRD007	324287	6584250	390	-69	169	210.5	22BVRD007 - 1.36m @ 4.35g/t from 136.64m for (GxM 6)
	20,				100		22BVRD007 - 1.20m @ 1.18g/t from 150m for (GxM 1)
							22BVRD007 - 1.85m @ 2.59g/t from 182.15m for (GxM 5)
							22BVRD007 - 8.00m @ 1.22g/t from 192m for (GxM 10)

Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection
	(MG/	A 94 Zone 5	 1)		(MGA94)	(m)	
B				Inter			at 0.5g/t Au cut off and up to 3m internal dilution
		e ne signin					22BVRD008 - 1.00m @ 0.53g/t from 283m for (GxM 1)
22BVRD008	324338	6584415	386	-48	193	309.4	
							22BVRD008 - 1.07m @ 2.97g/t from 289.73m for (GxM 3) 22BVRD009 - 1.00m @ 1g/t from 150m for (GxM 1)
							22BVRD009 - 1.00m @ 0.56g/t from 227m for (GxM 1)
22BVRD009	324469	6584257	384	-64	209	267.4	22BVRD009 - 0.40m @ 0.89g/t from 233.7m for (GxM 1)
							22BVRD009 - 2.05m @ 2.83g/t from 252.95m for (GxM 6)
							22BVRD010 - 1.00m @ 0.65g/t from 152m for (GxM 1)
							22BVRD010 - 1.08m @ 1.56g/t from 217.82m for (GxM 2)
22BVRD010	324466	6584259	384	-60	245	288.3	22BVRD010 - 1.00m @ 0.56g/t from 237m for (GxM 1)
							22BVRD010 - 5.50m @ 8.13g/t from 270.5m for (GxM 45)
							22BVRD011 - 2.00m @ 1.4g/t from 21m for (GxM 3)
							22BVRD011 - 1.60m @ 0.5g/t from 96.4m for (GxM 1)
							22BVRD011 - 5.80m @ 0.63g/t from 149.2m for (GxM 4)
22BVRD011	324455	6584113	386	-75	273	210.7	22BVRD011 - 1.00m @ 0.55g/t from 160m for (GxM 1)
							22BVRD011 - 0.53m @ 1.86g/t from 164.9m for (GxM 1)
							22BVRD011 - 3.00m @ 1.32g/t from 169m for (GxM 4)
							22BVRD011 - 12.10m @ 2.12g/t from 177m for (GxM 26)
							22BVRD017 - 1.10m @ 19.57g/t from 98.1m for (GxM 22)
22BVRD017	324175	6584084	390	-53	92	204.6	22BVRD017 - 1.00m @ 0.68g/t from 103m for (GxM 1)
							22BVRD017 - 2.84m @ 1.39g/t from 110.5m for (GxM 4)
							23BVRC001 - 3.00m @ 0.57g/t from 16m for (GxM 2)
23BVRC001	324279	6584133	388	-58	225	126	23BVRC001 - 1.00m @ 0.99g/t from 33m for (GxM 1)
							23BVRC001 - 1.00m @ 0.96g/t from 59m for (GxM 1)
							23BVRC001 - 7.00m @ 16.09g/t from 67m for (GxM 113)
							23BVRC002 - 1.00m @ 7.25g/t from 23m for (GxM 7)
							23BVRC002 - 3.00m @ 0.77g/t from 51m for (GxM 2)
							23BVRC002 - 7.00m @ 3.25g/t from 59m for (GxM 23)
23BVRC002	324308	6584158	387	-55	228	162	23BVRC002 - 2.00m @ 0.61g/t from 76m for (GxM 1) 23BVRC002 - 9.00m @ 1.94g/t from 83m for (GxM 17)
							238VRC002 - 9.00m @ 1.94g/t from 85m for (GXM 17) 238VRC002 - 1.00m @ 0.96g/t from 101m for (GXM 1)
							23BVRC002 - 4.00m @ 2.65g/t from 115m for (GxM 1)
							23BVRC002 - 4.00m @ 2.51g/t from 125m for (GxM 11)
							23BVRC003 - 1.00m @ 0.61g/t from 68m for (GxM 1)
							23BVRC003 - 11.00m @ 7.79g/t from 96m for (GxM 86)
23BVRC003	324406	6584070	387	-61	226	126	23BVRC003 - 1.00m @ 4.08g/t from 116m for (GxM 4)
							23BVRC003 - 1.00m @ 0.6g/t from 123m for (GxM 1)
23BVRC004	324376	6584076	387	-58	233	126	23BVRC004 - 3.00m @ 1.68g/t from 89m for (GxM 5)
							23BVRC005 - 3.00m @ 1.86g/t from 76m for (GxM 6)
23BVRC005	324430	6584035	387	-61	200	146	23BVRC005 - 1.00m @ 0.5g/t from 119m for (GxM 1)
							23BVRC005 - 4.00m @ 1.45g/t from 142m for (GxM 6)
							23BVRC006 - 1.00m @ 0.62g/t from 48m for (GxM 1)
23BVRC006	324461	6584076	386	-61	201	156	23BVRC006 - 2.00m @ 5.46g/t from 108m for (GxM 11)
							23BVRC006 - 6.00m @ 1.6g/t from 124m for (GxM 10)
							23BVRC014 - 1.00m @ 1.16g/t from 87m for (GxM 1)
23BVRC014	324462	6584074	386	-60	197	162	23BVRC014 - 3.00m @ 14.27g/t from 108m for (GxM 43)
							23BVRC014 - 2.00m @ 0.64g/t from 125m for (GxM 1)
							23BVRC015 - 8.00m @ 1.61g/t from 141m for (GxM 13)
23BVRC015	324499	6584130	385	-59	200	170	23BVRC015 - 1.00m @ 0.55g/t from 158m for (GxM 1)
							23BVRC015 - 5.00m @ 0.73g/t from 165m for (GxM 4)
23BVRC016	324475	6584012	386	-54	216	112	
23BVRC017	324312	6584096	390	-61	225	126	23BVRC017 - 2.00m @ 0.77g/t from 0m for (GxM 2)
							23BVRC017 - 1.00m @ 1.02g/t from 47m for (GxM 1)
23BVRC018	324301	6584092	390	-46	244	132	23BVRC018 - 2.00m @ 1.13g/t from 0m for (GxM 2)

	ntary						
Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MGA	A 94 Zone 5	1)		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant l	nters	ections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
							23BVRC019 - 1.00m @ 0.5g/t from 33m for (GxM 1)
							23BVRC019 - 1.00m @ 1g/t from 71m for (GxM 1)
							23BVRC019 - 1.00m @ 0.69g/t from 96m for (GxM 1)
2201/0.0010	224226	6504464	200	60	224	150	23BVRC019 - 1.00m @ 0.58g/t from 112m for (GxM 1)
23BVRC019	324326	6584161	386	-68	221	156	23BVRC019 - 5.00m @ 0.55g/t from 114m for (GxM 3)
							23BVRC019 - 7.00m @ 5.17g/t from 132m for (GxM 36)
							23BVRC019 - 3.00m @ 0.72g/t from 149m for (GxM 2)
							23BVRC019 - 1.00m @ 0.61g/t from 155m for (GxM 1)
							23BVRC020 - 1.00m @ 0.64g/t from 48m for (GxM 1)
							23BVRC020 - 9.00m @ 2.12g/t from 69m for (GxM 19)
23BVRC020	324325	6584159	386	-59	197	150	23BVRC020 - 1.00m @ 0.75g/t from 90m for (GxM 1)
							23BVRC020 - 1.00m @ 1.33g/t from 110m for (GxM 1)
							23BVRC020 - 5.00m @ 4.93g/t from 124m for (GxM 25)
23BVRC029	324407	6584221	385	-60	192	216	23BVRC029 - 7.00m @ 0.75g/t from 176m for (GxM 5)
2304 40029	524407	0004221	202	-00	132	210	23BVRC029 - 9.00m @ 0.88g/t from 192m for (GxM 8)
							23BVRC031 - 1.00m @ 2.2g/t from 79m for (GxM 2)
23BVRC031	324403	6584224	385	-61	202	208	23BVRC031 - 1.00m @ 0.6g/t from 165m for (GxM 1)
							23BVRC031 - 12.00m @ 6g/t from 196m for (GxM 72)
							23BVRC032 - 7.00m @ 0.91g/t from 42m for (GxM 6)
23BVRC032	324267	6584201	390	-72	201	162	23BVRC032 - 1.00m @ 0.61g/t from 127m for (GxM 1)
							23BVRC032 - 9.00m @ 5.57g/t from 136m for (GxM 50)
							23BVRC034 - 1.00m @ 0.6g/t from 64m for (GxM 1)
23BVRC034	323936	6584325	390	-61	221		23BVRC034 - 1.00m @ 0.62g/t from 96m for (GxM 1)
						150	23BVRC034 - 1.00m @ 2.59g/t from 144m for (GxM 3)
23BVRC036	323953	6584238	393	-47	222	90	23BVRC036 - 1.00m @ 0.69g/t from 21m for (GxM 1)
23BVRC038	323980	6584271	392	-49	223	120	23BVRC038 - 1.00m @ 0.63g/t from 55m for (GxM 1)
2001110000	020500	0001271	052	15	225	120	23BVRC038 - 2.00m @ 1.04g/t from 93m for (GxM 2)
							23BVRC039 - 1.00m @ 0.98g/t from 50m for (GxM 1)
							23BVRC039 - 2.00m @ 0.73g/t from 70m for (GxM 1)
23BVRC039	324281	6584247	390	-72	197	185	23BVRC039 - 1.00m @ 0.71g/t from 76m for (GxM 1)
							23BVRC039 - 1.00m @ 0.66g/t from 94m for (GxM 1)
							23BVRC039 - 1.00m @ 2.33g/t from 108m for (GxM 2)
							23BVRC039 - 7.00m @ 0.71g/t from 174m for (GxM 5)
23BVRC040	324001	6584297	392	-55	220	156	23BVRC040 - 1.00m @ 0.5g/t from 89m for (GxM 1)
							23BVRC040 - 1.00m @ 1.57g/t from 99m for (GxM 2)
							23BVRC042 - 1.00m @ 0.72g/t from 70m for (GxM 1)
23BVRC042	323966	6584300	392	-46	228	144	23BVRC042 - 1.00m @ 4.47g/t from 76m for (GxM 4)
							23BVRC042 - 1.00m @ 7.87g/t from 142m for (GxM 8)
							23BVRC043 - 2.00m @ 0.65g/t from 122m for (GxM 1)
23BVRC043	324229	6584282	389	-58	224	168	23BVRC043 - 3.00m @ 0.83g/t from 130m for (GxM 2)
							23BVRC043 - 4.00m @ 4.08g/t from 157m for (GxM 16)
23BVRC044	323966	6584302	392	-69	230	162	23BVRC044 - 1.00m @ 1.25g/t from 152m for (GxM 1)
							23BVRC045 - 4.00m @ 0.53g/t from 63m for (GxM 2)
							23BVRC045 - 2.00m @ 1.05g/t from 71m for (GxM 2)
							23BVRC045 - 1.00m @ 0.54g/t from 104m for (GxM 1)
23BVRC045	324376	6584205	386	-60	217	194	23BVRC045 - 2.00m @ 0.67g/t from 135m for (GxM 1)
							23BVRC045 - 5.00m @ 0.55g/t from 141m for (GxM 3)
							23BVRC045 - 1.00m @ 0.68g/t from 159m for (GxM 1)
1							23BVRC045 - 4.00m @ 7.68g/t from 179m for (GxM 31)

Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection
	(MG/	A 94 Zone 5	1)		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant	Inter	sections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
							23BVRC046 - 4.00m @ 0.88g/t from 47m for (GxM 4)
23BVRC046	324007	6584247	393	-46	202	114	23BVRC046 - 1.00m @ 1.19g/t from 55m for (GxM 1)
							23BVRC046 - 1.00m @ 1.29g/t from 65m for (GxM 1)
23BVRC047	324162	6584325	388	-75	202	203	23BVRC047 - 5.00m @ 4.99g/t from 165m for (GxM 25)
							23BVRC047 - 1.00m @ 0.85g/t from 186m for (GxM 1)
23BVRC048	323749	6584357	390	-45	235	72	23BVRC048 - 2.00m @ 0.77g/t from 0m for (GxM 2)
							23BVRC049 - 1.00m @ 1.92g/t from 104m for (GxM 2)
23BVRC049	324495	6584095	386	-61	211	167	23BVRC049 - 3.00m @ 3.49g/t from 122m for (GxM 10)
0.0.0.0.00.0.0	000700				0.0.1	60	23BVRC049 - 23.00m @ 1.57g/t from 133m for (GxM 36)
23BVRC050	323768	6584346	390	-46	221	60	23BVRC050 - 5.00m @ 0.57g/t from 0m for (GxM 3)
23BVRC051	324498	6584057	386	-59	215	157	23BVRC051 - 1.00m @ 0.74g/t from 131m for (GxM 1)
2201/00052	222700	6504040	200	45	222	60	23BVRC051 - 1.00m @ 2.67g/t from 137m for (GxM 3)
23BVRC052	323798	6584319	390	-45	223	60	23BVRC052 - 1.00m @ 0.85g/t from 1m for (GxM 1)
23BVRC053	324522	6584060	385	-59	211	143	23BVRC053 - 1.00m @ 1.3g/t from 103m for (GxM 1)
				_			23BVRC053 - 1.00m @ 3.37g/t from 108m for (GxM 3)
23BVRC054	323848	6584308	389	-63	216	84	23BVRC054 - 1.00m @ 0.8g/t from 34m for (GxM 1)
	224520	6504006	205	62	224	C.F.	23BVRC054 - 1.00m @ 1.13g/t from 45m for (GxM 1)
23BVRC055	324529	6584086	385	-63	224	65	$220 \vee 0000 = 2.00 \times 0.0000 = 0.00000 = 10000000000000000000$
23BVRC056	323852	6584301	389	-46	168	96	23BVRC056 - 3.00m @ 0.58g/t from 49m for (GxM 2)
				_			23BVRC056 - 1.00m @ 0.79g/t from 60m for (GxM 1)
							23BVRC057 - 1.00m @ 1.04g/t from 122m for (GxM 1) 23BVRC057 - 10.00m @ 1.01g/t from 128m for (GxM 10)
23BVRC057	324528	6584084	385	-63	222	173	23BVRC057 - 8.00m @ 3.16g/t from 142m for (GxM 15)
							23BVRC057 - 2.00m @ 1.38g/t from 171m for (GxM 3)
23BVRC058	323862	6584364	390	-62	222	113	23BVRC058 - 1.00m @ 1.17g/t from 56m for (GxM 1)
23BVRC059	324530	6584087	385		183	180	23BVRC059 - 2.00m @ 1.15g/t from 138m for (GxM 2)
23BVRC060	323910	6584295	390		238	114	23BVRC060 - 1.00m @ 2.88g/t from 0m for (GxM 2)
2557110000	525510	0301255	550	01	230	111	23BVRC061 - 1.00m @ 14.96g/t from 21m for (GxM 15)
							23BVRC061 - 1.00m @ 0.76g/t from 170m for (GxM 1)
23BVRC061	324218	6584337	386	-61	196	203	23BVRC061 - 1.00m @ 1.39g/t from 179m for (GxM 1)
							23BVRC061 - 1.00m @ 0.56g/t from 194m for (GxM 1)
							23BVRC061 - 1.00m @ 0.63g/t from 199m for (GxM 1)
23BVRC062	323739	6583661	402	-45	151	72	23BVRC062 - 1.00m @ 0.89g/t from 37m for (GxM 1)
							23BVRC063 - 1.00m @ 0.52g/t from 108m for (GxM 1)
0.0.01 (0.00.00		6504057			101		23BVRC063 - 1.00m @ 0.65g/t from 123m for (GxM 1)
23BVRC063	324523	6584057	385	-74	181	149	23BVRC063 - 6.00m @ 0.66g/t from 128m for (GxM 4)
							23BVRC063 - 7.00m @ 15.7g/t from 139m for (GxM 110)
23BVRC064	323799	6583699	400	-45	150	66	
23BVRC066	323858	6583803	399	-51	161	108	23BVRC066 - 1.00m @ 2.05g/t from 91m for (GxM 2)
23BVRC067	323939	6583792	397	-45	150	66	
23BVRC068	323988	6583858	396	-45	150	90	
23BVRC069	324062	6583883	394	-45	150	78	
23BVRC070	324342	6584076	388	-56	230	102	
23BVRC071	324374	6584074	388	-56	211	108	23BVRC071 - 1.00m @ 1.16g/t from 56m for (GxM 1)
23BVRC072	224414	6584036	387	-69	222	120	23BVRC072 - 1.00m @ 3.88g/t from 85m for (GxM 4)
230010072	324414	0504030	101	-09	227	120	23BVRC072 - 1.00m @ 0.51g/t from 106m for (GxM 1)
							23BVRC073 - 1.00m @ 0.67g/t from 119m for (GxM 1)
23BVRC073	324526	6584095	384	-67	235	190	23BVRC073 - 41.00m @ 5.48g/t from 133m for (GxM 225)
							23BVRC073 - 1.00m @ 0.66g/t from 181m for (GxM 1)
23BVRC074	324334	6584094	390	-90	0	3	
23BVRC075	323834	6584205	392	-90	0	3	
23BVRC076	323832	6584190	392	-90	0	3	
				_			

Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection
	(MGA	A 94 Zone 5	1)		(MGA94)	(m)	
Be	onnie Val	e RC signifi	cant	Inter	sections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
23BVRC077	323829	6584175	392		0	3	
23BVRC078	323826	6584160	392		0	3	
23BVRC079	323841	6584157		-90	0	3	
23BVRC080	323844	6584172	392		0	3	
							23BVRC081 - 1.00m @ 0.52g/t from 0m for (GxM 1)
23BVRC081	323846	6584187	392	-90	0	3	23BVRC081 - 1.00m @ 0.52g/t from 2m for (GxM 1)
23BVRC082	323849	6584202	392	-90	0	3	23BVRC082 - 1.00m @ 0.68g/t from 2m for (GxM 1)
23BVRC083	323863	6584200	392		0	3	
23BVRC084	323861	6584185	392		0	3	
23BVRC085	323859	6584170	392		0	3	
23BVRC086	323783	6584167	392		0	3	23BVRC086 - 1.00m @ 0.57g/t from 0m for (GxM 1)
23BVRC087	323785	6584182	392		0	3	
23BVRC088	323787	6584197	392		0	3	
23BVRC089	323790	6584212	392		0	3	
23BVRC090	323792	6584226	392		0	3	
23BVRC091	323795	6584242	392		0	3	
23BVRC092	323807	6584224	392		0	3	
23BVRC093	323805	6584210	392		0	3	23BVRC093 - 1.00m @ 0.51g/t from 0m for (GxM 1)
23BVRC094	323802	6584195	392		0	3	23BVRC094 - 1.00m @ 0.59g/t from 1m for (GxM 1)
23BVRC095	323800	6584180	392		0	3	
23BVRC096	323797	6584165	392		0	3	
23BVRC097	323812	6584163	392		0	3	
23BVRC098	323814	6584177	392		0	3	
23BVRC099	323817	6584192	392		0	3	
23BVRC100	323819	6584207	392		0	3	
23BVRC100	323822	6584222	392		0	3	23BVRC101 - 1.00m @ 0.5g/t from 0m for (GxM 1)
23BVRC101	323825	6584321	390		0	2	23BVRC102 - 1.00m @ 2.89g/t from 1m for (GxM 3)
23BVRC102	323826	6584336	391		0	2	23BVRC102 - 1.00m @ 1.12g/t from 1m for (GxM 1)
23BVRC104	323811	6584351	391		0	2	
23BVRC104	323825	6584349	391		0	2	23BVRC105 - 1.00m @ 0.79g/t from 1m for (GxM 1)
		6584363	390		0	2	23BVRC105 - 1.00m @ 0.65g/t from 0m for (GXM 1)
23BVRC100			-			2	23BVRC107 - 1.00m @ 1.24g/t from 1m for (GxM 1)
23BVRC107	323825	6584380	390 391		0	2	2004/010/ 1.00// @ 1.2-6/11/01/ 111/01 (U/W 1)
23BVRC108	323813	6584366	390		0	2	
	323810	6584337	390 391		0	2	23BVRC110 - 1.00m @ 0.83g/t from 1m for (GxM 1)
23BVRC110	323811	6584321	390		0	2	23BVRC110 - 1.00m @ 1.38g/t from 1m for (GXM 1)
23BVRC111 23BVRC112	323796	6584321	390		0	2	
23BVRC112 23BVRC113	323796	6584336	391		0	2	
23BVRC114	323796	6584351	391		0	2	23BVRC114 - 2.00m @ 0.52g/t from 0m for (GxM 1)
23BVRC115	323796	6584366		-90	0	2	23BVRC115 - 1.00m @ 0.9g/t from 1m for (GxM 1)
23BVRC116	323781	6584381		-90	0	2	23BVRC116 - 1.00m @ 0.57g/t from 1m for (GxM 1)
23BVRC117	323781	6584366	390		0	2	23BVRC117 - 2.00m @ 0.93g/t from 0m for (GXM 2)
23BVRC118	323784	6584351	391		0	2	23BVRC118 - 2.00m @ 0.64g/t from 0m for (GXM 2)
23BVRC119	323767	6584366	390		0	2	23BVRC119 - 2.00m @ 1.25g/t from 0m for (GXM 1)
23BVRC119	323751	6584366	390 390		0	2	23BVRC119 - 2.00m @ 1.25g/t from 0m for (GXM 1)
23BVRC120	323751	6584351		-90	0	2	23BVRC120 - 1.00m @ 0.67g/t from 0m for (GxM 1)
2JUVINCIZI	323766	6584336	391		0	2	23BVRC121 - 1.00m @ 0.6g/t from 0m for (GxM 1) 23BVRC122 - 1.00m @ 0.6g/t from 0m for (GxM 1)
22B\/PC122	323/00	0384330				2	
23BVRC122	272701	6501001	200				
23BVRC123	323781	6584334	390		0		23BVRC123 - 1.00m @ 1.6g/t from 0m for (GxM 2)
	323781 323751 323751	6584334 6584336 6584347	390 390 390	-90	0	2	23BVRC123 - 1.00m @ 1.6g/t from 0m for (GXM 2) 23BVRC124 - 1.00m @ 2.28g/t from 1m for (GXM 2) 23BVRC125 - 1.00m @ 1.4g/t from 0m for (GXM 1)

Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Intersection
	(MG/	A 94 Zone 5:	1)		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant I	nters	sections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
23BVRC127	323735	6584366	390	-90	0	2	23BVRC127 - 1.00m @ 0.85g/t from 0m for (GxM 1)
23BVRC128	323721	6584366	389	-90	0	2	23BVRC128 - 1.00m @ 0.63g/t from 1m for (GxM 1)
23BVRC129	323881	6584361	393	-90	0	3	23BVRC129 - 3.00m @ 0.71g/t from 0m for (GxM 2)
23BVRC130	323877	6584347	393	-90	0	3	
23BVRC131	323873	6584332	393	-90	0	3	23BVRC131 - 1.00m @ 1.37g/t from 0m for (GxM 1)
23BVRC132	323878	6584319	393	-90	0	4	23BVRC132 - 4.00m @ 0.9g/t from 0m for (GxM 4)
23BVRC133	323887	6584328	393	-90	0	4	
23BVRC134	323891	6584342	393	-90	0	4	23BVRC134 - 2.00m @ 1g/t from 0m for (GxM 2)
23BVRC135	323895	6584357	393	-90	0	3	23BVRC135 - 1.00m @ 0.6g/t from 1m for (GxM 1)
23BVRC136	323909	6584353	393	-90	0	3	23BVRC136 - 2.00m @ 0.62g/t from 0m for (GxM 1)
23BVRC137	323906	6584338	393	-90	0	4	23BVRC137 - 3.00m @ 0.53g/t from 0m for (GxM 2)
23BVRC138	323901	6584324	393	-90	0	3	23BVRC138 - 3.00m @ 1.15g/t from 0m for (GxM 3)
23BVRC139	323894	6584316	393	-90	0	4	23BVRC139 - 4.00m @ 1.37g/t from 0m for (GxM 5)
23BVRC140	323874	6584296	390	-90	0	3	
23BVRC141	324007	6584222	393	-90	0	3	23BVRC141 - 2.00m @ 1.09g/t from 0m for (GxM 2)
23BVRC142	324011	6584236	393	-90	0	3	23BVRC142 - 2.00m @ 0.99g/t from 0m for (GxM 2)
23BVRC143	324014	6584251	393		0	3	23BVRC143 - 3.00m @ 1g/t from 0m for (GxM 3)
23BVRC144	324018	6584265		-90	0	4	23BVRC144 - 2.00m @ 1.02g/t from 1m for (GxM 2)
23BVRC145	324022	6584280	392	-90	0	3	23BVRC145 - 2.00m @ 0.91g/t from 1m for (GxM 2)
23BVRC146	324025	6584294	392	-90	0	3	23BVRC146 - 3.00m @ 0.81g/t from 0m for (GxM 2)
23BVRC147	324011	6584298	392	-90	0	3	23BVRC147 - 2.00m @ 0.69g/t from 1m for (GxM 1)
23BVRC148	324008	6584284	392	-90	0	3	23BVRC148 - 2.00m @ 0.55g/t from 0m for (GxM 1)
23BVRC149	324004	6584269	392	-90	0	3	23BVRC149 - 3.00m @ 0.76g/t from 0m for (GxM 2)
23BVRC150	324000	6584254	393	-90	0	3	23BVRC150 - 3.00m @ 1.82g/t from 0m for (GxM 5)
23BVRC151	323997	6584240	393	-90	0	3	,
23BVRC152	323993	6584225	393	-90	0	3	23BVRC152 - 2.00m @ 0.58g/t from 1m for (GxM 1)
23BVRC153	323978	6584229	393	-90	0	3	23BVRC153 - 2.00m @ 0.6g/t from 1m for (GxM 1)
23BVRC154	323966	6584233	393	-90	0	4	
23BVRC155	323982	6584244	393	-90	0	3	23BVRC155 - 1.00m @ 0.59g/t from 1m for (GxM 1)
23BVRC156	323985	6584258	393	-90	0	2	23BVRC156 - 2.00m @ 7.46g/t from 0m for (GxM 15)
23BVRC157	323989	6584273	392	-90	0	4	23BVRC157 - 4.00m @ 1.17g/t from 0m for (GxM 5)
23BVRC158	323993	6584287	393	-90	0	3	23BVRC158 - 3.00m @ 3.08g/t from 0m for (GxM 9)
23BVRC159			393	-		3	23BVRC159 - 3.00m @ 1.54g/t from 0m for (GxM 5)
23BVRC160	323982	6584305	393	-90	0	3	23BVRC160 - 3.00m @ 0.7g/t from 0m for (GxM 2)
23BVRC161	323967	6584309	392	-90	0	3	23BVRC161 - 1.00m @ 2.02g/t from 2m for (GxM 2)
23BVRC162	323964	6584297	392	-90	0	3	
23BVRC163	323978	6584289	392	-90	0	3	
23BVRC164	323975	6584276	393	-90	0	3	
23BVRC165	323971	6584262	393	-90	0	3	
23BVRC166	323967	6584247	393	-90	0	3	23BVRC166 - 3.00m @ 0.7g/t from 0m for (GxM 2)
23BVRC167	323985	6584134	395	-90	0	3	
23BVRC168	323989	6584149	395	-90	0	3	
23BVRC169	323993	6584164	395	-90	0	3	23BVRC169 - 1.00m @ 0.51g/t from 1m for (GxM 1)
23BVRC170	323978	6584167	395	-90	0	3	23BVRC170 - 1.00m @ 0.61g/t from 2m for (GxM 1)
23BVRC171	323974	6584152	395	-90	0	3	
23BVRC172	323971	6584138	395	-90	0	3	23BVRC172 - 1.00m @ 0.83g/t from 0m for (GxM 1)
23BVRC173	323957	6584142	395	-90	0	3	23BVRC173 - 1.00m @ 0.73g/t from 1m for (GxM 1)
23BVRC174	323856	6584155	392	-90	0	3	
23BVRC175	323960	6584156	395	-90	0	3	23BVRC175 - 1.00m @ 0.55g/t from 0m for (GxM 1)
23BVRC176	323964	6584171	395	-90	0	3	
	323949	6584174	395	-90	0	3	
23BVRC177							
23BVRC177 23BVRC178	323946	6584160	394	-90	0	3	
	323946 323942	6584160 6584145	394 395	-90 -90	0	3	

Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection
	(MG/	A 94 Zone 5	1)		(MGA94)	(m)	
В				Inter			at 0.5g/t Au cut off and up to 3m internal dilution
23BVRC181	323931	6584164	1	-90	0	3	
23BVRC182	323934	6584178		-90	0	3	23BVRC182 - 1.00m @ 0.78g/t from 2m for (GxM 1)
23BVRC183	323938	6584192		-90	0	4	
23BVRC184	323952	6584189		-90	0	4	
23BVRC185	323967	6584185		-90		4	
23BVRC186	323981	6584182		-90		4	
23BVRC187	323996	6584178	395		0	4	23BVRC187 - 3.00m @ 0.6g/t from 0m for (GxM 2)
23BVRC188	323949	6584236	393	-	0	3	23BVRC188 - 1.00m @ 0.5g/t from 2m for (GxM 1)
23BVRC189	323953	6584251	393	-	0	3	
23BVRC190	323957	6584265		-90	0	3	
23BVRC191	323960		392		0	3	
23BVRC192	324076	6584369	390	-	0	2	23BVRC192 - 1.00m @ 0.58g/t from 0m for (GxM 1)
23BVRC193	324076	6584355	390		0	2	
23BVRC194	324079	6584342	390		0	2	
23BVRC195	324089	6584327	390		0	2	23BVRC195 - 1.00m @ 1.1g/t from 0m for (GxM 1)
23BVRC195	324085	6584340		-90	0	2	23BVRC195 - 1.00m @ 1.1g/t Holm om for (GXM 1) 23BVRC196 - 2.00m @ 0.83g/t from 0m for (GXM 2)
23BVRC190	324091	6584355		-90	0	2	23BVRC197 - 1.00m @ 0.63g/t from 1m for (GxM 1)
23BVRC198	324050	6584355		-90		2	23BVRC198 - 1.00m @ 0.56g/t from 0m for (GxM 1)
23BVRC199	324103	6584362		-90	0	2	
23BVRC199	324114	6584355	391 391	-90	0	2	23BVRC200 - 1.00m @ 0.68g/t from 0m for (GxM 1)
23BVRC200	324113	6584340	391	-	0	2	23BVRC200 - 1.00m @ 0.08g/t from 0m for (GxM 1) 23BVRC201 - 1.00m @ 0.69g/t from 0m for (GxM 1)
23BVRC201 23BVRC202	324100		390 391	-	0	2	23BVRC201 - 1.00m @ 0.05g/t from 0m for (GxM 1) 23BVRC202 - 2.00m @ 0.77g/t from 0m for (GxM 2)
23BVRC202 23BVRC203	324053	6584384		-90 -90		3	
23BVRC203.1		6584395		-90	0	3	23BVRC203 - 3.00m @ 0.68g/t from 0m for (GxM 2)
23BVRC203.1	324042	6584404	391	-	0	3	23BVRC203.1 - 3.00m @ 0.58g/t from 0m for (GxM 2) 23BVRC204 - 2.00m @ 0.92g/t from 0m for (GxM 2)
23BVRC204 23BVRC205	324031	6584415	392		0	3	23BVRC204 - 2.00m @ 0.92g/t from 0m for (GxM 2) 23BVRC205 - 2.00m @ 0.82g/t from 0m for (GxM 2)
			392 391	-90	0	3	
23BVRC206 23BVRC207	324052 324063	6584406 6584396	391 391		0	3	23BVRC206 - 3.00m @ 1.02g/t from 0m for (GxM 3)
23BVRC207 23BVRC208	324003	6584407		-90	0	3	23BVRC207 - 3.00m @ 1.43g/t from 0m for (GxM 4)
23BVRC208	324073	6584417		-90	0	3	23BVRC208 - 1.00m @ 0.68g/t from 2m for (GxM 1) 23BVRC209 - 1.00m @ 0.59g/t from 0m for (GxM 1)
	324001	6584427			0	3	23BVRC210 - 1.00m @ 0.81g/t from 2m for (GxM 1)
23BVRC210 23BVRC211			391				· • · ·
	324060	6584428	392 391	-90 -90	0	3 3	23BVRC211 - 1.00m @ 1.28g/t from 1m for (GxM 1)
23BVRC212		6584418	391 391	-90 -90	0		23BVRC212 - 3.00m @ 0.66g/t from 0m for (GxM 2)
23BVRC213	324083			-		3	23BVRC213 - 2.00m @ 0.9g/t from 1m for (GxM 2)
	324107 324152	6584328 6584503		-90 -90	0	2	220/0C215 100m @ 0.71g/t from 2m for (CVM 1)
23BVRC215 23BVRC216	323900	6584438	392 393		0	3	23BVRC215 - 1.00m @ 0.71g/t from 2m for (GxM 1)
23BVRC210 23BVRC217	323896	6584430	393		0	4	
	323896	6584414	393		0	5	23BVRC218 - 1.00m @ 0.87g/t from 0m for (GxM 1)
23BVRC218 23BVRC219	323896	6584400	393 393		0	4	256VRC218 - 1.0011 @ 0.878/t 11011 011 101 (GXIVI 1)
	323890	6584385	393 393	-	0	4	
23BVRC220	323896	6584384		-90	0	3	
23BVRC221	323896	6584370		-90 -90	0		$2201/0.222$, $1.00m \approx 0.7\pi/t from 1m for (CyN11)$
23BVRC222 23BVRC223	323911	6584370	393 393		0	4	23BVRC222 - 1.00m @ 0.7g/t from 1m for (GxM 1)
						4	23BVRC223 - 1.00m @ 0.86g/t from 2m for (GxM 1)
23BVRC224	323919	6584372	393 393	-90 -90	0	4	23BVRC224 - 2.00m @ 0.57g/t from 1m for (GxM 1)
23BVRC225	323911	6584384		-	0	3	23BVRC225 - 1.00m @ 0.51g/t from 0m for (GxM 1)
23BVRC226	323911	6584399	393		0	3	120//PC117 200m @ 0 Cattern On for (Catter)
23BVRC227	323911	6584414		-90	0	3	23BVRC227 - 3.00m @ 0.6g/t from 0m for (GxM 2)
	323911	6584429	393	-90	0	3	
23BVRC228 23BVRC229	323926	6584430	393	00	0	3	23BVRC229 - 2.00m @ 1.23g/t from 1m for (GxM 2)

Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection
	(MG)	A 94 Zone 5:	1)		(MGA94)	(m)	
В				Inter			at 0.5g/t Au cut off and up to 3m internal dilution
							23BVRC231 - 1.00m @ 0.53g/t from 0m for (GxM 1)
23BVRC231	323925	6584400	393	-90	0	3	23BVRC231 - 1.00m @ 0.52g/t from 2m for (GxM 1)
23BVRC232	323921	6584388	393	-90	0	5	23BVRC232 - 2.00m @ 0.59g/t from 0m for (GxM 1)
23BVRC233	324042	6584395	391	-90	0	3	
23BVRC233	324042		389		0	3	$220/0.0224 \pm 1.00m \approx 1.1g/t from 0m for (CvM.1)$
	1						23BVRC234 - 1.00m @ 1.1g/t from 0m for (GxM 1)
23BVRC235	324213	6584396		-90	0	3	23BVRC235 - 2.00m @ 0.87g/t from 0m for (GxM 2)
23BVRC236	324214	6584381		-90	0	3	23BVRC236 - 2.00m @ 1.19g/t from 0m for (GxM 2)
23BVRC237	324229	6584381	389		0	3	23BVRC237 - 2.00m @ 1.25g/t from 0m for (GxM 3)
23BVRC238	324228	6584396	389	-90	0	3	23BVRC238 - 1.00m @ 1.12g/t from 0m for (GxM 1)
23BVRC239	324227	6584411	389	-90	0	3	
23BVRC240	324241	6584413	389	-90	0	3	23BVRC240 - 2.00m @ 0.99g/t from 0m for (GxM 2)
23BVRC241	324243	6584398	389	-90	0	3	23BVRC241 - 1.00m @ 1.69g/t from 0m for (GxM 2)
23BVRC242	324244			-90	0	3	23BVRC242 - 2.00m @ 1.41g/t from 0m for (GxM 3)
23BVRC243	324259	6584384	389	-90	0	3	23BVRC243 - 2.00m @ 1.2g/t from 0m for (GxM 2)
23BVRC244	324261	6584399	389	-90	0	4	23BVRC244 - 4.00m @ 0.54g/t from 0m for (GxM 2)
23BVRC245	324258	6584413	389	-90	0	3	23BVRC245 - 1.00m @ 0.9g/t from 1m for (GxM 1)
23BVRC246	324271	6584415	389	-90	0	3	23BVRC246 - 2.00m @ 0.88g/t from 0m for (GxM 2)
23BVRC247	324273	6584401	389	-90	0	3	23BVRC247 - 1.00m @ 0.8g/t from 1m for (GxM 1)
23BVRC248	324274	6584386	389	-90	0	3	23BVRC248 - 3.00m @ 0.69g/t from 0m for (GxM 2)
23BVRC249	324289	6584387	389	-90	0	3	23BVRC249 - 2.00m @ 0.97g/t from 1m for (GxM 2)
23BVRC250	324288	6584402	389	-90	0	3	23BVRC250 - 2.00m @ 0.72g/t from 0m for (GxM 1)
23BVRC251	324286	6584417	389	-90	0	3	23BVRC251 - 3.00m @ 0.76g/t from 0m for (GxM 2)
23BVRC252	324286	6584295	390	-90	0	4	23BVRC252 - 2.00m @ 0.55g/t from 2m for (GxM 1)
23BVRC253	324298	6584310	390	-90	0	4	23BVRC253 - 4.00m @ 0.51g/t from 0m for (GxM 2)
23BVRC254	324301	6584325	390	-90	0	4	23BVRC254 - 2.00m @ 0.52g/t from 0m for (GxM 1)
23BVRC255	324286		390		0	4	23BVRC255 - 1.00m @ 0.51g/t from 3m for (GxM 1)
23BVRC256	324286		390		0	4	23BVRC256 - 1.00m @ 1.03g/t from 0m for (GxM 1)
23BVRC257	324271	6584325	390		0	4	23BVRC257 - 1.00m @ 0.54g/t from 0m for (GxM 1)
23BVRC258	324271	6584310	390		0	4	23BVRC258 - 1.00m @ 0.52g/t from 0m for (GxM 1)
23BVRC259	324271	6584295	390		0	4	23BVRC259 - 3.00m @ 0.52g/t from 1m for (GxM 2)
23BVRC260	324271	6584280	390	-90	0	4	23BVRC260 - 4.00m @ 0.61g/t from 0m for (GxM 2)
23BVRC261						4	
	324286	6584291		-90 -90	0		23BVRC261 - 3.00m @ 0.59g/t from 1m for (GxM 2)
23BVRC262	1					4	23BVRC262 - 3.00m @ 0.66g/t from 1m for (GxM 2)
23BVRC263	324301	6584280		-90	0	4	23BVRC263 - 1.00m @ 0.51g/t from 2m for (GxM 1)
23BVRC264	324300	6584266		-90	0	4	23BVRC264 - 4.00m @ 0.57g/t from 0m for (GxM 2)
23BVRC265	324301	6584250		-90	0	4	23BVRC265 - 4.00m @ 0.51g/t from 0m for (GxM 2)
23BVRC266	324287	6584263	391	-90	0	4	23BVRC266 - 3.00m @ 0.51g/t from 0m for (GxM 2)
23BVRC267	324273	6584250	390	-90	0	3	
23BVRC268	324286		390		0	3	23BVRC268 - 1.00m @ 0.51g/t from 0m for (GxM 1)
23BVRC269	324299		390		0	3	23BVRC269 - 3.00m @ 0.52g/t from 0m for (GxM 2)
23BVRC270	324300		390		0	3	
23BVRC271	324301	6584205	390		0	3	23BVRC271 - 3.00m @ 0.57g/t from 0m for (GxM 2)
23BVRC272	324301	6584190	390		0	3	23BVRC272 - 3.00m @ 0.57g/t from 0m for (GxM 2)
23BVRC273	324268	6584189	390	-90	0	3	
23BVRC274	324286	6584189	390	-90	0	3	23BVRC274 - 2.00m @ 0.61g/t from 1m for (GxM 1)
23BVRC275	324286	6584204	390	-90	0	3	23BVRC275 - 1.00m @ 0.5g/t from 1m for (GxM 1)
23BVRC276	324286	6584219	390	-90	0	3	23BVRC276 - 2.00m @ 0.69g/t from 0m for (GxM 1)
23BVRC277	324271	6584235	390	-90	0	3	
23BVRC278	324222	6584235	389	-90	0	3	23BVRC278 - 2.00m @ 0.71g/t from 0m for (GxM 1)
23BVRC279	324226	6584250	389	-90	0	3	23BVRC279 - 1.00m @ 0.51g/t from 1m for (GxM 1)
	1	6584265	389	-90	0	3	23BVRC280 - 2.00m @ 0.8g/t from 1m for (GxM 2)

Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection
	(MG/	A 94 Zone 5	1)		(MGA94)	(m)	
В				Inter			at 0.5g/t Au cut off and up to 3m internal dilution
23BVRC281	324226	6584279	389	-90	0	3	23BVRC281 - 1.00m @ 0.59g/t from 0m for (GxM 1)
23BVRC282	324230	6584291	389	-90	0	3	23BVRC282 - 1.00m @ 0.58g/t from 2m for (GxM 1)
23BVRC283	324241	6584295	389	-90	0	3	238VRC283 - 1.00m @ 0.6g/t from 1m for (GxM 1)
23BVRC284	324241	6584280	389	-90	0	3	23BVRC284 - 1.00m @ 0.56g/t from 0m for (GxM 1)
23BVRC285	324254	6584295	390	-90	0	3	23BVRC285 - 3.00m @ 0.56g/t from 0m for (GxM 2)
23BVRC286	324254	6584280	390	-90	0	3	23BVRC286 - 3.00m @ 0.86g/t from 0m for (GxM 3)
23BVRC287	324254	6584265	389	-90	0	3	23BVRC287 - 2.00m @ 0.68g/t from 0m for (GxM 1)
23BVRC288	324256	6584250	389	-90	0	3	23BVRC288 - 2.00m @ 0.65g/t from 0m for (GxM 1)
23BVRC289	324244	6584265	389	-90	0	3	
23BVRC290	324241	6584250	389	-90	0	3	23BVRC290 - 1.00m @ 0.75g/t from 1m for (GxM 1)
23BVRC291	324237	6584235	389	-90	0	3	23BVRC291 - 2.00m @ 1.42g/t from 0m for (GxM 3)
23BVRC292	324252	6584235	389	-90	0	3	23BVRC292 - 3.00m @ 1.23g/t from 0m for (GxM 4)
23BVRC293	324271	6584205	390	-90	0	3	23BVRC293 - 1.00m @ 0.79g/t from 1m for (GxM 1)
23BVRC294	324297	6584112	390	-90	0	3	23BVRC294 - 1.00m @ 0.73g/t from 2m for (GxM 1)
23BVRC295	324310	6584117	390	-90	0	3	23BVRC295 - 3.00m @ 0.73g/t from 0m for (GxM 2)
23BVRC296	324324	6584122	389	-90	0	3	23BVRC296 - 3.00m @ 1.21g/t from 0m for (GxM 4)
23BVRC297	324338	6584127	390	-90	0	3	
23BVRC298	324353	6584132	389	-90	0	3	23BVRC298 - 3.00m @ 0.87g/t from 0m for (GxM 3)
23BVRC299	324358	6584118	389	-90	0	3	23BVRC299 - 1.00m @ 0.5g/t from 0m for (GxM 1)
23BVRC300	324344	6584113	389	-90	0	3	23BVRC300 - 2.00m @ 0.66g/t from 0m for (GxM 1)
23BVRC301	324329	6584108	390	-90	0	3	23BVRC301 - 2.00m @ 1.45g/t from 0m for (GxM 3)
23BVRC302	324315	6584103	390	-90	0	3	23BVRC302 - 1.00m @ 0.8g/t from 0m for (GxM 1)
23BVRC303	324301	6584098	390	-90	0	3	23BVRC303 - 2.00m @ 0.99g/t from 0m for (GxM 2)
23BVRC304	324303	6584086	390	-90	0	3	23BVRC304 - 2.00m @ 0.95g/t from 0m for (GxM 2)
23BVRC305	324321	6584090	390	-90	0	3	23BVRC305 - 2.00m @ 0.64g/t from 0m for (GxM 1)
23BVRC305.1		6584094	390	-90	0	3	23BVRC305.1 - 2.00m @ 2.26g/t from 0m for (GxM 5)
23BVRC306	324348	6584099	390	-90	0	3	
23BVRC307	324362	6584104	390	-90	0	3	23BVRC307 - 1.00m @ 0.51g/t from 1m for (GxM 1)
23BVRC308	324440	6583940	387	-60	220	48	
23BVRC309	324449	6583966	387	-56	228	66	
						7.0	23BVRC310 - 1m @ 0.74g/t from 61m for (GxM 1)
23BVRC310	324452	6583998	387	-58	228	78	23BVRC310 - 1m @ 0.9g/t from 70m for (GxM 1)
23BVRC311	324397	6583939	388	-60	220	30	
23BVRC312	324406	6583970	388	-60	220	48	
23BVRC313	324413	6583998	387	-60	216	66	23BVRC313 - 2m @ 0.66g/t from 51m for (GxM 1)
23BVRC314	324343	6583971	389	-60	220	30	
23BVRC315	324385	6584008	388	-60	220	66	
23BVRC316	324305	6583978	389	-60	220	30	
23BVRC317	324340	6584005	389	-60	220	48	
23BVRC318	324353	6584022	388	-55	250	66	
23BVRC319	324310	6584010	389	-60	220	48	
							23BVRC320 - 1m @ 0.55g/t from 46m for (GxM 1)
23BVRC320	324240	6584086	390	-60	220	78	23BVRC320 - 1m @ 1.66g/t from 62m for (GxM 2)
					223		23BVRC320 - 4m @ 0.53g/t from 66m for (GxM 2)
							23BVRC320 - 3m @ 0.73g/t from 72m for (GxM 2)
23BVRC321	324240	6584029	390	_	250	60	23BVRC321 - 1m @ 1.52g/t from 42m for (GxM 2)
23BVRC322	324302	6584045	389	-60	220	66	
23BVRC323	324340	6584064	388	-58	204	84	
23BVRC324	324308	6584089	390	-50	220	96	23BVRC324 - 2m @ 2.99g/t from 94m for (GxM 6)
23BVRC325	324427	6583889	388	-70	340	24	
							23BVRD007 - 6.00m @ 0.58g/t from 123m for (GxM 3)
							23BVRD007 - 1.00m @ 0.53g/t from 133m for (GxM 1)
23BVRD007	324394	6584285	385	-73	182	306	23BVRD007 - 1.00m @ 0.83g/t from 145m for (GxM 1)
							23BVRD007 - 0.53m @ 0.82g/t from 286.7m for (GxM 0)
							23BVRD007 - 0.60m @ 1.12g/t from 290m for (GxM 1)

Hele ID-	Fosting	Northing	Die	Dim	Animanthe	TOH-	
Hole ID		Northing		Dip		EOH	Intersection
	•	A 94 Zone 5	·		(MGA94)	(m)	
В	onnie Val	e RC signifi	cant	Inters	sections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
							23BVRD008 - 1.00m @ 1.24g/t from 154m for (GxM 1)
23BVRD008	324391	6584285	385	-79	194	312.2	23BVRD008 - 0.40m @ 1.04g/t from 206m for (GxM 0)
							23BVRD008 - 0.38m @ 1.42g/t from 213.62m for (GxM 1)
							23BVRD008 - 7.37m @ 1.99g/t from 290.63m for (GxM 15)
							23BVRD009 - 2.00m @ 0.98g/t from 111m for (GxM 2)
							23BVRD009 - 1.15m @ 2.14g/t from 127.85m for (GxM 2)
23BVRD009	324389	6584286	385	-69	200	273.3	23BVRD009 - 1.53m @ 0.9g/t from 159m for (GxM 1)
							23BVRD009 - 0.43m @ 1.22g/t from 192.57m for (GxM 1)
							23BVRD009 - 0.52m @ 0.54g/t from 202.62m for (GxM 0)
							23BVRD009 - 2.32m @ 6.77g/t from 251.44m for (GxM 16)
220/00010	324473	6584257	204	GE	203	288	23BVRD010 - 1.00m @ 0.62g/t from 0m for (GxM 1)
23BVRD010	324473	0584257	384	-00	203	288	23BVRD010 - 6.00m @ 8.98g/t from 271m for (GxM 54)
2201/00044		6504060		74	202		23BVRD010 - 0.96m @ 0.68g/t from 282m for (GxM 1)
23BVRD011	324471	6584260	384		202	11	
23BVRD012	324471	6584260	384	-72	199	306.2	23BVRD012 - 2.00m @ 1.39g/t from 93m for (GxM 3)
							23BVRD013 - 1.10m @ 0.57g/t from 119m for (GxM 1)
220/00012	224467	6504050	201	~	214	270	23BVRD013 - 0.68m @ 0.72g/t from 151m for (GxM 0)
23BVRD013	324467	6584258	384	-64	214	276	23BVRD013 - 0.61m @ 0.64g/t from 221.64m for (GxM 0)
							23BVRD013 - 4.00m @ 0.58g/t from 236m for (GxM 2)
							23BVRD013 - 2.00m @ 2.76g/t from 257m for (GxM 6)
23BVRD021	324373	6584266	385	-59	212	237	23BVRD021 - 1.00m @ 2.56g/t from 87m for (GxM 3)
23BVRD022	324372	6584267	385	-59	223	120	23BVRD022 - 4.00m @ 0.95g/t from 96m for (GxM 4)
23BVRD023	324371	6584268	385	-66	203	6	
							23BVRD024 - 0.88m @ 0.59g/t from 163.62m for (GxM 1)
23BVRD024	324371	6584269	385	-66	203	249.1	23BVRD024 - 0.90m @ 3.98g/t from 218.4m for (GxM 4)
							23BVRD024 - 2.53m @ 6.17g/t from 220.07m for (GxM 16)
23BVRD025	324246	6584327	387	-73	211	253	23BVRD025 - 1.34m @ 13.59g/t from 212m for (GxM 18)
							23BVRD026 - 12.00m @ 1.26g/t from 29m for (GxM 15)
23BVRD026	324245	6584328	387	-77	171	285.9	23BVRD026 - 1.00m @ 0.71g/t from 48m for (GxM 1)
							23BVRD026 - 1.45m @ 5.33g/t from 282.28m for (GxM 8)
23BVRD027	324244	6584328	387	-81	218	282.8	23BVRD027 - 4.00m @ 5.24g/t from 235m for (GxM 21)
250110027	524244	0504520	507	01	210	202.0	23BVRD027 - 1.00m @ 0.66g/t from 252m for (GxM 1)
23BVRD028	324247	6584352	386	-78	232	282.9	23BVRD028 - 7.10m @ 21.56g/t from 244.9m for (GxM 153)
250110020	524247	0504552	500	,0	252	202.5	23BVRD028 - 1.98m @ 0.97g/t from 277.02m for (GxM 2)
							23BVRD030 - 1.00m @ 0.75g/t from 117m for (GxM 1)
23BVRD030	324405	6584223	385	-68	208	234.1	23BVRD030 - 0.54m @ 0.93g/t from 190.46m for (GxM 1)
							23BVRD030 - 2.00m @ 0.89g/t from 195m for (GxM 2)
							23BVRD030 - 3.00m @ 2.61g/t from 207m for (GxM 8)
							23BVRD033 - 2.00m @ 0.72g/t from 0m for (GxM 1)
							23BVRD033 - 1.00m @ 0.52g/t from 11m for (GxM 1)
23BVRD033	324285	6584302	390	-71	211	240.1	23BVRD033 - 1.00m @ 1.87g/t from 52m for (GxM 2)
							23BVRD033 - 1.00m @ 0.63g/t from 60m for (GxM 1)
							23BVRD033 - 9.00m @ 3.19g/t from 71m for (GxM 29)
							23BVRD033 - 0.73m @ 6.31g/t from 219.67m for (GxM 5)
							23BVRD035 - 1.00m @ 1.55g/t from 77m for (GxM 2)
							23BVRD035 - 1.00m @ 0.63g/t from 95m for (GxM 1)
							23BVRD035 - 0.34m @ 0.58g/t from 142.66m for (GxM 0)
23BVRD035	324332	6584293	385	-71	208	258.8	23BVRD035 - 0.32m @ 12.44g/t from 148.85m for (GxM 4)
							23BVRD035 - 5.00m @ 0.69g/t from 224m for (GxM 3)
							23BVRD035 - 1.08m @ 0.58g/t from 231.92m for (GxM 1)
							23BVRD035 - 0.95m @ 0.5g/t from 236m for (GxM 0)
							23BVRD037 - 5.00m @ 0.72g/t from 34m for (GxM 4)
							23BVRD037 - 5.00m @ 0.81g/t from 60m for (GxM 4)
							23BVRD037 - 1.00m @ 2.75g/t from 76m for (GxM 3)
1	374221	6584294	285	-79	212	294.8	23BVRD037 - 1.00m @ 0.54g/t from 86m for (GxM 1)
23BVR0037	324331	6584294	385	-79	213	2.5-1.0	23BVRD037 - 1.00m @ 0.97g/t from 90m for (GxM 1)
23BVRD037							
23BVRD037							23BVRD037 - 1.00m @ 0.78g/t from 99m for (GxM 1)
23BVRD037							23BVRD037 - 1.00m @ 0.78g/t from 99m for (GxM 1) 23BVRD037 - 1.00m @ 0.94g/t from 147m for (GxM 1)

Criteria	Commer	ntary						
	Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection
		(MGA	A 94 Zone 5	1)		(MGA94)	(m)	
	В	onnie Val	e RC signifi	cant	Inter	sections cal	culated	at 0.5g/t Au cut off and up to 3m internal dilution
								23BVRD041 - 1.00m @ 0.53g/t from 0m for (GxM 1)
								23BVRD041 - 3.00m @ 2.14g/t from 51m for (GxM 6)
	23BVRD041	324280	6584249	390	-74	238	204.9	23BVRD041 - 1.00m @ 0.64g/t from 157m for (GxM 1)
								23BVRD041 - 1.00m @ 4.69g/t from 179m for (GxM 5)
								23BVRD041 - 0.30m @ 1.36g/t from 184m for (GxM 0)
								23BVRD065 - 1.00m @ 0.5g/t from 4m for (GxM 1)
								23BVRD065 - 1.00m @ 1.44g/t from 57m for (GxM 1)
	23BVRD065	324288	6584305	300	60	180	240.4	23BVRD065 - 1.00m @ 1.32g/t from 104m for (GxM 1)
	230010000	524200	0304303	350	-60 180 240.4		240.4	23BVRD065 - 1.00m @ 0.56g/t from 109m for (GxM 1)
								23BVRD065 - 3.00m @ 13.92g/t from 118m for (GxM 42)
							23BVRD065 - 3.62m @ 3.03g/t from 218m for (GxM 11)	
								23BVRD074 - 5.00m @ 7.17g/t from 133m for (GxM 36)
	23BVRD074	324470	6584082	386	-87	179	204.6	23BVRD074 - 8.00m @ 1.23g/t from 149m for (GxM 10)
								23BVRD074 - 10.00m @ 6.38g/t from 164m for (GxM 64)
Data aggregation methods Relationship between mineralisation widths and	width averaHoles	of 1m i ge grac were c relatioi	for RC h des. drilled or	oles thog	s an gona	d 0.2m f	or dia eralisa	a 0.5g/t Au cut-off with a minimum reporting mond holes, reported as length-weighted ation as much as possible, however the and true width cannot be estimated exactly
intercept lengths Diagrams	Refer	to Figu	ires and	Tal	bles	in body	of the	e release.
•		-				-		
Balanced reporting			of histo vs releas		lrill é	assay re	sults ı	used in this estimation are published in
Other substantive	• There	is no c	other ma	teria	al ex	xploratio	n data	a to report at this time.
exploration data								
Further work			-			-		part of FML's Life of Mine plan. Ore Reserv sources is currently underway

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	Commentary
Database integrity	 Data was geologically logged electronically; collar and downhole surveys were also received electronically as was the laboratory analysis results. These electronic files were loaded into an acQuire database by either consultants rOREdata or the company in-house Database Administrator. Data was routinely extracted to Microsoft Access during the drilling program for validation by the geologist in charge of the project. FML's database is a Microsoft SQL Server database (acQuire), which is case sensitive, relational, and normalised to the Third Normal Form. As a result of normalisation, the following data integrity categories exist: Entity Integrity: no duplicate rows in a table, eliminated redundancy and chance of error. Domain Integrity: Enforces valid entries for a given column by restricting the type, the format, or a range of values. Referential Integrity: Rows cannot be deleted which are used by other records. User-Defined Integrity: business rules enforced by acQuire and validation codes set up by FML. Additionally, in-house validation scripts are routinely run in acQuire on FML's database and they include the following checks: Missing logging, sampling, downhole survey data and hole diameter Overlapping intervals in geological logging, sampling, down hole surveys Checks for character data in numeric fields Data extracted from the database were validated visually in Datamine Studio software and ARANZ Geo Leapfrog software. Also, when loading the data any errors regarding missing values and overlaps are highlighted.
Site visits	 Alex Aaltonen, the Competent Person for Sections 1 and 2 of Table 1 is FML's General Manager of Exploration and Geology, conducts regular site visits. Hannah Kosovich, the Competent Person for Section 3 of Table 1 is FML's Resource Geologist and has conducted site visits in the past.
Geological interpretation	 All available drill hole and historic mining data was used to guide the geological interpretation of the mineralisation. An approximate cut-off grade of 0.5g/t was implemented. Some internal dilution was included for consistency. The mineralised geological interpretation was constructed in Seequent Leapfrog Geo software. A re-model of the Quarry Lode has been undertaken from the previous 2020 release following the increased drilling density, new structural data and improved geological understanding of the deposit. Mineralisation at Bonnie Vale is hosted in discrete quartz lodes within brittle-ductile shear zones cross cutting the Bonnie Vale granodiorite intrusive. Geological continuity between drill holes of both quartz veins, shears and lithology is considered good and is further improved by a network of oriented diamond core drilled since 2021. The quartz veins are typically weakly laminated and contain mostly massive, milky quartz. Individual mineralised veins range form 5cm to more than 3m width. Gold mineralisation is considered to be entirely within the quartz veins and occurs as microscopic to nugget size free gold. Acknowledging that gold mineralisation is restricted to Quartz veining meant that logged geology, specifically the presence of quartz veining, was used to guide the mineralisation interpretation. During 2022 FML drilled 12 oriented diamond core holes targeting the Quarry lode. This provided additional structural data which aligned with lithological logging further guided the geological interpretation specifically regarding vein orientation.

Criteria	Commentary
	 The location and orientation of historic underground stopes and workings provided evidence to support the modelled orientations in areas with less diamond drill core. A number of separate and distinct mineralised zones have been identified striking ENE and dipping moderately ~ 40° - 50° NNE to NE. In total 56 individual lodes were modelled at the Quarry lode and NW towards and within the historic Bonnie Vale Mining Centre. Within 5 of these larger lodes smaller internal high-grade shoots were identified and modelled as separate domains. Minor deviation only of the lode geometry was noticed between drill holes along strike and down-dip. In 2023 FML drilled a further 73 RC holes and 23 oriented diamond core holes to infill and extend the mineralisation model. These holes were successfully incorporated into the geological interpretation and resulted in a further 14 individual lodes and 1 internal high-grade shoot being modelled. The tails stockpiles were interpreted in Leapfrog Geo software with solids constructed within the surveyed tails around zones of consistently thicker mineralisation. Cut off for the previously milled quartz vein tails is estimated at 0.4 g/t and mineable/recoverable volumes have been built that exceed this cut off. Furthermore, where consistently higher metal content areas were delineated, these were sub domained and estimated separately.
Dimensions	 The upper part of the Quarry Lode and adjacent hangingwall lodes was infilled predominantly with RC at 20m x 30m spacing between 315mRL (75m below surface) to surface. Limited mainly lower grade mineralisation was intersected in this region. Furthermore the drilling was extended to the ENE at 40m x 80m spacing in the vicinity of the Bonnie Vale Reef as a first pass to gauge potential for shallow mineralisation amenable to open pit extraction. The majority of the shallow mineralisation ranged in width between 1m and 2m thickness. Strike of shallow mineralisation has been extended beyond 400m The main high grade part of the Quarry Lode extends ENE over a strike length of about 500m and from about a depth of about 75m below surface (315mRL) to approximately 480m below surface (-100mRL). The thickness of the main Quarry Lode varies from 2m to approximately 16m, with an average thickness of 7-8m between 315m RL and 135mRL (250m vertical depth range). Below about 135mRL the quarry lode becomes slightly steeper and narrows to 1-2m width. The historic Bonnie Vale tails stockpiles averaged 2.5 ~ 3.5m thick with variable extents. The largest extending over 200m x 90m wide, smaller tails around 70m x 60m. Within each stockpile the recoverable volumes varied from 880m³ to 18,738m³.
Estimation and modelling techniques	 An Ordinary Kriging (OK) estimate was run on the Insitu Bonnie Vale resource using Datamine software, following the process below: Drill hole data was selected within mineralised lodes and then within the internal HG core. All domain boundaries were considered "hard" boundaries and no drill hole information was used by another lode in the estimation. This includes the HG core lodes. Where lodes intersected, priority was assigned to one of the lodes and samples/blocks assigned to that particular lode and removed from the lower priority one. All drill hole data was composited to 1m downhole intervals – 1m is the dominant raw sampling interval. The composited assay values of each lode were imported into Snowden Supervisor for geostatistical analysis. A review of histograms, probability plots and mean/variance plots for each lode revealed some outlier sample values. Top capping of higher Au values within each lode was carried out with Au values above the cut-off grade reset to the cut-off grade. Not all lodes were top cut.

Criteria	Commentary
	 The different lodes have different top-cuts as required, a maximum top-cap of 70ppm was used for one of the HG core lodes with an average of 4ppm Au used in the surround lodes. Variography was carried out in Datamine Supervisor software, given the negatively skewed nature of the gold grades the data was transformed to normal scores distribution before being back transformed to original units before exporting. Variography was performed on the individual lodes with larger sample numbers, in total 6 variograms were modelled. These models were shared with the other lodes of similar orientation and proximity. The back-transformed variogram models had moderate to high nugget effects (20% to 55% of total sill), with a range from 35m to 142m. No "unfolding" of the mineralised wireframes was required. Estimation (via Ordinary Kriging) was into a non-rotated block model in MGA94 grid, with a parent block size of 10 mE x 10 mN x 5 mRL - this is about the average drill spacing in the deposit. Sub-blocking was used to best fill the wireframes and inherit the grade of the parent block. The ellipsoid search parameters used the variogram ranges, with a minimum of 8 and maximum of 18 amples per block estimated block after this first pass 53% of blocks had estimated. For un-estimated block after this first pass, the search distance was expanded by a factor of two and the minimum number of samples remaining at 4. Only 2% of blocks were estimated in the third search pass. After an initial validation it was determined a few lodes had over-estimated, the high-grade core within Lodes 1, 2 and 7 as well as three other lodes, 5, 16 and 44. A grade restricted search method was implemented to reduce the higher sample grades over-influencing block grades where lower samples exist. For Lode 1 HG core samples greater than 20ppm Au were restricted to within a 20m search ellipse orientation distance. For four of th
Moisture	Tonnages are estimated on a dry basis.
Cut-off parameters	 The Mineral Resource for Bonnie Vale have been reported above a 0.5g/t Au cut-off for open pit Mineral Resource above the 315mRL and a 1.5g/t Au cut-off for the Mineral Resource below the 315mRL. This is based on a gold price of AUD \$2,200. The tails stockpiles have only been reported within mineable/recoverable volumes that exceed 0.4ppm Au cut-off. Operating costs considered include underground mining, transport to and processing

Criteria	Commentary													
	at FI	at FML's Three Mile Hill processing plant (10km away) and administration.												
Mining factors or assumptions	 Following on from the 2020 PFS update, a Life of Mine (LOM) plan was released on 24th October 2022 outlining the underground LOM mine plan for Bonnie Vale. The Three Mile Hill Processing Plant (TMH Plant) has achieved practical completion and is currently being commissioned (ASX 21/07/2023). Future reclamation of the tails stockpiles is anticipated with haulage to, and processing at TMH Plant 9km to the south. Given the material represent previously milled quartz veins it is likely that this material can be blended for processing without displacing primary material considered by the life of mine plan. 										letion ocessing I quartz			
Metallurgical factors or	Bonnie Vale Quarry Lode Primary Mineral Resource Metallurgical test work One RC sample from Bonnie Vale Quarry Lode was tested for gold recovery by ALS in 2015 report A167726										S in			
assumptions			GRAVIT	Y/CYAN	NIDE LE/	ACH TES	TWORK	: SUMM/	ARY O	F RESULTS				
	Test ID	122	ud Grade (/t)	•	А	u Extrac @ ho		5)		Au Tail		nt Cons. g/t)		
	(BK-)	Assay	Calc'o	Gra	v 4			24 4	48	Grade (g/t)	NaCN	Lime		
	7952	9.45	9.09	67.	7 97.	1 98	.4 9	9.4 9	9.5	0.05	0.26	0.24		
	Three rep for gold r			-		-		e tested	from I	Bonnie Va	ale Quar	ry Lode		
		GRA	AVITY/C	YANIDE	LEACH	TESTWO	RK SUN	MARY: M	SITE					
	Comp ID	Comp ID Test No. Grind A (BK-) Grind A					@ h	action (% nours	1	Au Tai Grade	(k	gents g/t)		
		9980	(µm)	Assay	Calc'd	Grav 59.2	12 95.8	24	48		NaCN	Lime		
	Master Comp	9980	212	10.1/	9.47 9.54	58.8	97.8	98.1 98.2	98.6		0.41	0.16		
		9982	106	8.32	9.37	59.9	98.0	98.6	98.8		0.38	0.16		
	Two com The sam recovery	Bonnie Vale Historical Tails Mineral Resource metallurgical test work Two composite metallurgical samples were compiled from 2023 RC grade control drilling. The sample selection was representative for lower grade and higher grade domains. Gold recovery for lower grade domain material was 72% and gold recovery for higher grade domain was 78% A24706 - Focus Mineral Limited												
					GRAVIIT	LEACH IE		K SUMMA	KT.			Reagent		
	Sample ID	Sour			rind P80	d Grade (g	/t) Gravity	, ,	Au Extrac	ction (%)	Au Tail Grade	Consumption (kg/t)		
					im)	Au say Cale	Au c. (%)	2-hr 4	-hr 6-l	hr 8-hr 24	Intel	NaCN Lime		
	FC235966 HG	BVL HG Tails			20 0.86	/1.37 1.2	1 36.35		18 78. .42 72.			0.62 0.92 0.59 0.76		
	The	0			:(_;(- D	:- \/-/-						
Environmental factors or assumptions	grou • The	 The Quarry Reef occurs within the historic Bonnie Vale mining centre with previous ground disturbances including waste dumps and milling residues/tailings. The PFS Environmental assumptions included the mine plan utilising all waste generated as mine fill. 												
Bulk density	2.65 are k	t/m³ wa based oi	s used n test w	for moo ork car	delled q ried out	uartz ve t on ½ c	eins reg diamon	gardles: d core.	s of w The w	d rock typ eathering /ater imm d Felsic (n. Values Nersion te	used echnique		

Criteria	Commentary
	 (FGD)= 2.0t/m³; transitional FGD=2.4/m³ and Fresh FGD=2.66/m³; transitional UM=2.7/m³ and Fresh UM=2.9/m³. A bulk density of 1.6 t/m³ was applied to the tail's stockpiles. This figure is based on the approximate bulk density of sand similar to the processed quartz material.
Classification	 Resources have been classified as either Indicated or Inferred based mainly on geological confidence in the geometry/continuity of the lodes and drill density. In addition, various estimation output parameters such as number of samples, search pass, kriging variance, and slope of regression have been used to assist in classification. The SE portion of the main Quarry Lode has been infill drilled on an irregular grid but averages 20m x 30m and a large proportion of the lodes filled in the first pass. A shape was created to code blocks within as Indicated. Lodes outside this shape were also classed as Indicated if they filled in the first search pass and had sufficient drill coverage. Remaining blocks that filled in predominantly the second search pass were classified as Inferred, with drill spacing averaging 50m x 50m. Lodes that had been extended based on 1 or 2 holes were classified as Sub-Inferred, below reportable classification and are future exploration targets. The tail's stockpiles have been classified as Indicated with 10m x 10m spaced drilling.
Audits or reviews	No external audits of the mineral resource have been conducted.
Discussion of relative accuracy/ confidence	 This is addressed in the relevant paragraph on Classification above. The Mineral Resource relates to global tonnage and grade estimates. Bonnie Vale has historic production from 1894 to 1911 with recorded production figures of 176,883oz at an average grade of 16.2 g/t, the grade matches well with this Mineral Resource estimate of the high-grade core.