

ASX Announcement

Level 2, 159 Adelaide Terrace East Perth WA 6004, Australia

PO Box 3233 East Perth WA 6892, Australia

T: +61 8 9215 7888 F: +61 8 9215 7889

E: info@focusminerals.com.au
W: www.focusminerals.com.au

27 May 2019

25% Increase in Karridale Gold Deposit's Mineral Resource

West Australian gold explorer Focus Minerals (**ASX: FML**) (**Focus** or the **Company**) is pleased to announce a significant increase in the JORC 2012 Mineral Resource Estimate for the Karridale deposit, part of the Company's Laverton Gold Project. The update includes drilling completed in 2018 south of the maiden resource area.¹

This updated Karridale Mineral Resource is reported to 180m depth from surface using 0.6g/t Au cut-off and comprises:

Indicated Resource: 3.1 Mt @ 1.5 g/t Au for 154,000 contained ounces – increase of 14%
 Inferred Resource: 12.6 Mt @ 1.3 g/t Au for 518,000 contained ounces – increase of 28%
 Total Resource: 15.7 Mt @ 1.3 g/t Au for 672,000 contained ounces – increase of 25%

The Mineral Resource is reported on a dry tonnage basis. See the attached JORC Table 1 for additional details.

Karridale is one of several significant deposits and prospects across Focus' Laverton Gold Project, which covers a 507 square kilometre parcel of highly prospective tenements on the outskirts of the Laverton township, in Western Australia's north-eastern Goldfields.

Various companies have drilled at Karridale in the past 40 years. However, only holes drilled by Focus since 2013 are used in this Mineral Resources. A total of 197 drill holes were used, comprising: 175 Reverse Circulation (RC) holes and 22 diamond holes with an RC pre-collar (RCDD), totalling 45,365m.

Focus is also pleased to announce that the 25% increase in estimated Mineral Resources at Karridale was achieved at a highly competitive discovery cost of \$12/oz and; less than 200m depth from the surface. The mineralisation at Karridale remains open in all directions.

Commenting on the increase in Karridale's Mineral Resource, Focus Minerals CEO, Mr Zhaoya Wang, said:

"This is a very pleasing outcome for Focus and based on the success of the successful rounds of drilling that we have carried out at Karridale. So far only 40% of the Karridale footprint has been drill-tested, with mineralisation open along strike and depth to highlight the resource growth potential.

"As we continue drilling across our broader Laverton Gold Project area, our confidence is rising that we have the potential to define a regionally significant gold project in the north-eastern Goldfields."

•

¹ ASX announcement on 23 February 2018

JORC 2012 Mineral Resource Summary of the Karridale Deposit

Background

The Karridale deposit is located 30km south-east of Laverton, with access via Merolia Road.

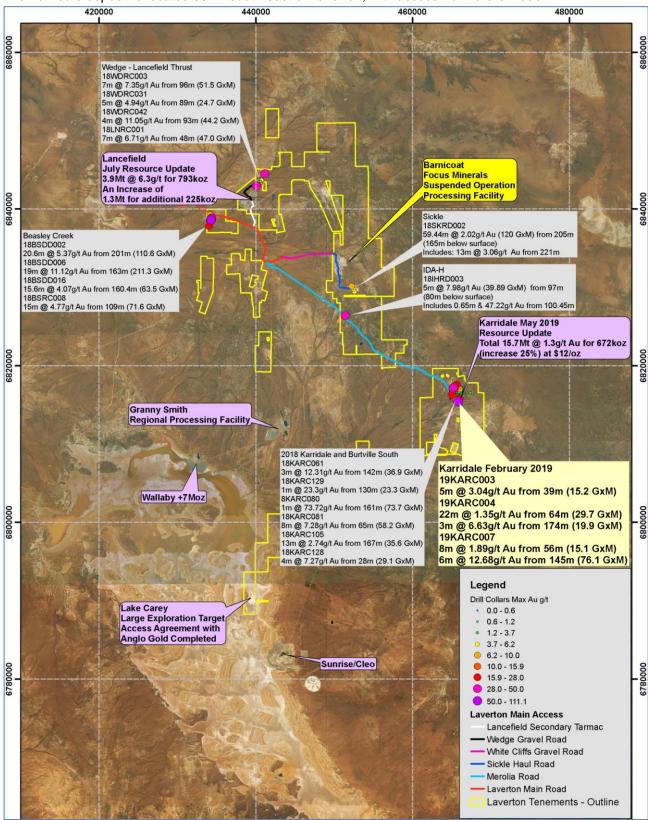


Figure 1: Focus Minerals tenements and project locations with 12 months of significant drill intersections and resource updates

Karridale is spread across four mining tenements 2km south of the Focus-owned Burtville Open Pit (Figure 2). Tenements M38/8 and M38/1281 are wholly owned by Focus. M38/73 and M38/89 are held under the Merolia Joint Venture between Focus Minerals (Laverton) Pty Ltd and GSM Mining Company Pty Ltd (a wholly owned subsidiary of Gold Fields). Substantial expenditure by Focus in 2018 and 2019 continues to allow Focus to gain the interest to above 91%.

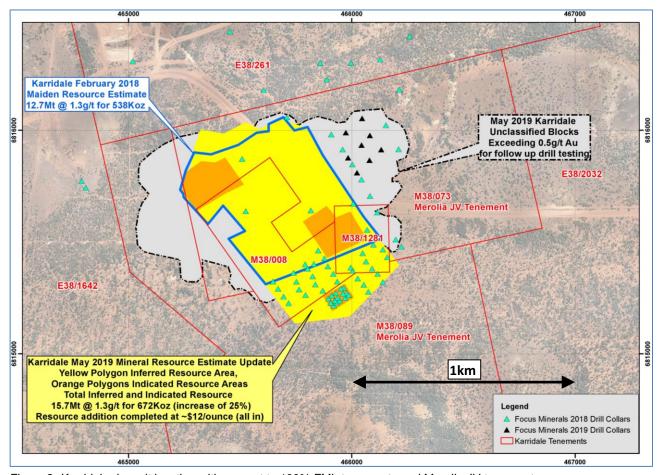


Figure 2: Karridale deposit location with respect to 100% FML tenements and Merolia JV tenements.

Karridale has been historically mined as part of the Burtville mining centre. Gold was discovered in the area in 1897, resulting in the formation of the township of Burtville (pop. 400 early 1900s). Between 1899 and 1922, there was recorded production of 6,315 tonnes at 80.6 g/t from the mining centres of Karridale, Roscommon and Bonds Find. The most extensive historic workings on the deposit were the Karridale/Boomerang Mines, where between 1900 and 1905 1,628 tonnes of ore were mined to produce 4,882oz of gold.

At Karridale, ore has been historically mined to a depth between 20m and 40m, below which excess groundwater, diminishing gold grades and fresh rock appear to have made small-scale mining unprofitable.

The very high-grade component of the mineralisation at Karridale is a subset of the broader bulk tonnagestyle shear hosted gold mineralisation. It is considered likely that lower-grade mineralisation persists within the area of the historical workings as selective small-scale mining was used to achieve the very high-grade historical production.

Since the 1970s, various companies have conducted drilling campaigns at Karridale. The bulk of the historical drilling was undertaken by Sons of Gwalia, which also mined an oxide open pit at Burtville in the 1990s.

Geology and Geological Interpretation

Karridale sits in the southern part of the Burtville-Karridale Project Group, which contains a stacked swarm of shallow NNW dipping gold mineralised thrusts developed over a combined footprint of at least 3km NNW strike x +1.7km ENE strike (refer ASX announcement 29 April 2019, Figure 3). The Karridale Gabbro has intruded these stacked thrusts to the immediate north of Karridale and is associated with reduced shear thickness and grades. To the north of the gabbro at Burtville South (500m x +2.2km footprint) the shears are hosted by granodiorite intrusions. A similar host to mineralisation is found at Burtville Open Pit (+780m strike and open to extension).

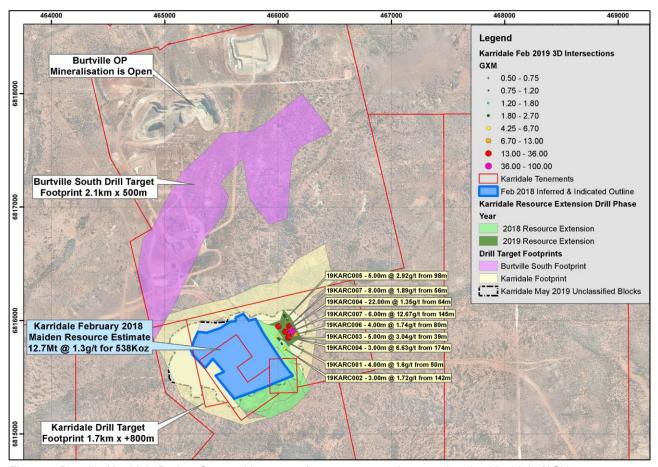


Figure 3: Burtville-Karridale Project Group with stages of resource extension completed at Karridale (ASX Announcement on 29 April 2019) and; Karridale and Burtville Exploration Footprints (ASX Announcement on 30 January 2019)

Karridale sits on the south-dipping edge of the Karridale Gabbro in what appears to be a pre-mineralisation half graben (Figure 4). The half graben is mostly filled with intermediate volcanics and some sedimentary units sitting on a base of pillow basalts (Figure 4). The package is cut by at least 13 shallow NNW dipping mineralised thrusts with identical style to those located at Burtville South and Burtville (Figure 4).

The surface expression of these shears can be inferred from the numerous shafts/inclined workings developed at Karridale. Historical miners also targeted N-S striking sub-vertical shear veins at Karridale. The location of these structures can be inferred by chains of close spaced shafts that dot the surface of Karridale. Sampling of spoil near these shafts has located laminated quartz specimens with visible gold. This mineralisation has not been systematically targeted by Focus to date and would require targeted drilling with modified drill azimuth.

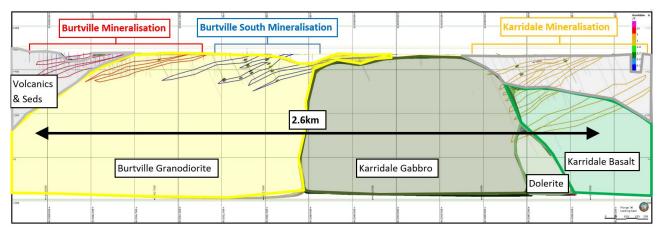


Figure 4: Section 465,350mE (looking east, 100m view window), schematic simplified geology for the larger Burtville-Karridale Project Group with simplified mineralisation, historic drill traces and 2018 drill traces with intersections exceeding 0.6 g/t Au

Resource drilling conducted in 2018 has targeted the up-plunge, shallow expression of shallow NNW dipping shears and tying them into oxide mineralisation outlined by Sons of Gwalia about 30 years ago. In addition, footprint drilling in 2018 has been highly successful in outlining the Burtville South and Karridale Footprints.²

The three phases of footprint drilling completed to date have consistently increased the area hosting multiple Burtville-Karridale style shallow NNW dipping mineralised thrusts and expanded the area for follow up resource drilling. Furthermore, many of the structures located by the footprint drilling can now be inferred to link up-dip to the location of historic shafts and or historic oxide resources which is improving geological interpretation and hence drill success.

Mineralisation at the Karridale Deposit area has been interpreted over more than 1.2km strike length trending ENE and extends from near surface to a depth of 450m below surface. The thickness of the individual quartz veins varies from 0.25m to 6m thick with an average thickness of 2m. However, the wireframed lodes of vein sets varies from more than 30m to 0.25m thick, with an average thickness of 5m.

The May 2019 Karridale Resource Estimate has delivered a 25% increase in ounces above 290MRL (to 180m below surface). This resource extension and upgrade was calculated from 2018 resource extension drilling targeting shallow mineralization between surface and 200m depth. Table 2 provides a vertical profile of where the shallow Inferred and Indicated resources were added to the February 2018 Maiden Resource Estimate.

Z -mRL	Depth Range	Change Tonnes	Change Ounces	% of Total May 2019 Resource Update Ounce Increase
420.0 -> 470.0	Surface to 50m Depth	59253	23265	17%
370.0 -> 420.0	50m to 100m Depth	161126	47410	35%
320.0 -> 370.0	100-150m Depth	218144	42491	32%
290.0 -> 320.0	150 - 180m Depth	101623	20751	15%
Grand Total	0- 180m Depth	540147	133918	100%

Table 2: Comparison by depth of Inferred and Indicated Resource addition for the May 2019 Karridale Resource Update vs the February 2018 Maiden Karridale Resource Estimation (note some discrepancies may occur due to rounding)

_

² ASX Announcements 30 January 2019 and 29 April 2019

Karridale Exploration Target

During 2018 Focus targeted up-dip extension of modelled shallow NNW dipping mineralisation south of the February 2018 inferred resource boundary (Figures 2-7).

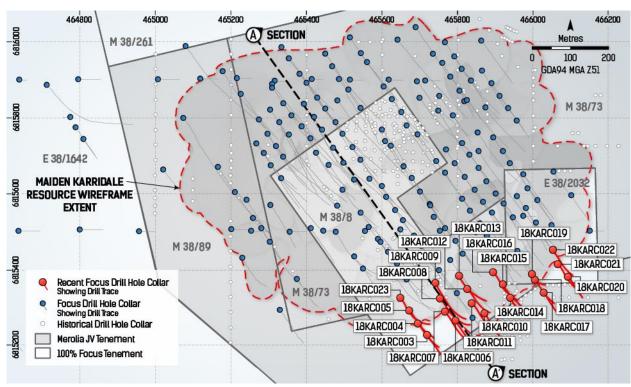


Figure 5: Plan View of Stage 1 Southern Karridale Resource Extension Drilling

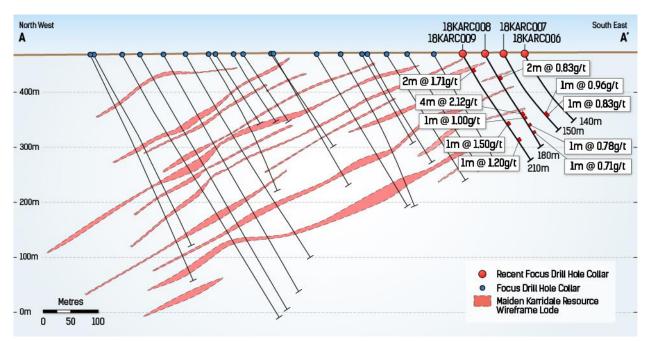


Figure 6: Drill Section View towards the NE Showing selected intersections in the southern Karridale resource extension area. Holes drilled in the reportion period have red dot collar symbols

This targeted area included many historical shafts developed for mining at Karridale. However, the majority of the area was footwall (south) to the main Karridale workings in an area of unclassified blocks that did not at that time have sufficient drill spacing for a JORC 2012 compliant resource.

Significantly, a comparison of the South Karridale Feb 2018 Unclassified Blocks to the May 2019 resource update shows a significant improvement in tonnes, grade and contained ounces.

	Feb 2018 Unclassified Blocks	May 2019 Inferred Resource	Percent Change	
Estimated Ounces	933,636	959,601	3%	
Estimated Grade	1.32	1.45	9%	
Estimated Ounces	39,823.53	44,817.23	13%	

Table 3: South Karridale (footwall to Karridale historical workings, Figure 7). Unclassified blocks estimated during the Maiden February 2018 Resource estimation compared to the May 2019 Karridale Resource update following drilling to Inferred status.

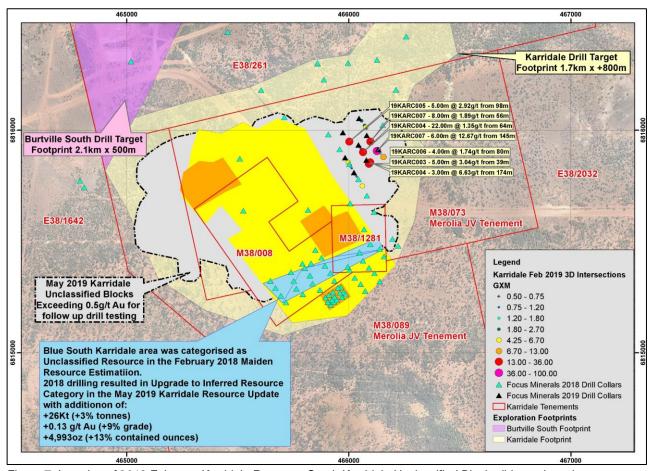


Figure 7: Location of 2018 February Karridale Resource South Karridale Unclassified Blocks (blue polygon) now reclassified as Inferred Resource with significant increases in tonnes, grade and contained ounces (Table 3). In addition, the extension drilling results (ASX Announcement on 29 April 2019) are shown which indicate significant grade intersections exceeding overall 2019 May Karridale Resource grade in areas of currently unclassified blocks.

The 2019 May Karridale Resource update includes a 14% increase in indicated resources. The area drilled to indicated resource was not chosen as factor of potential grade but rather because of its ease of drilling as it comprised surface and near-surface oxide that could be drilled to closer spacing very quickly and at a low cost. The grade of the new Indicated Resource is equivalent to those already estimated at Karridale in 2018 (1.54g/t).

It is worth noting that to date the areas of Karridale that have been drilled to Indicated status have delivered a significantly higher grade (1.54g/t Au) than the bulk areas currently classified at Inferred Resource (1.25gt Au in Feb 2018 rising to 1.28 g/t Au in May 2019). This repeated grade improvement in areas drilled to

Indicated Resource is highly encouraging as it suggests that the gold mineralisation at Karridale is robust and may improve with follow up closer spaced drilling.

To the east and west of the 2019 May Resource Estimate lie significant areas of unclassified mineralisation that Focus believes are prime targets for resource upgrade (Figure 7).

Based on the current understanding of the Karridale geology and mineralisation distribution, Focus projects an initial exploration target to a depth of 200m of:

23.5Mt – 29Mt at 1.33g/t to 1.5g/t Au for 1.0Moz to 1.4Moz

This exploration target will be assessed by exploration drilling over the next 24 months

The potential quantity and grade of the Exploration Target are conceptual in nature and therefore is an approximation. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

For further information please contact: For media and investor enquiries please contact:

Zaiqian Zhang

Chief Financial Officer Focus Minerals Ltd

Phone: +61 8 9215 7888

Peter Klinger

Cannings Purple

Phone: +61 411 251 540

About Focus Minerals Limited (ASX: FML)

Focus is a Perth-based, ASX-listed gold exploration company focused on delivering shareholder value from its Laverton Gold Project, in Western Australia's north-eastern Goldfields. The Laverton project covers 507km² area of highly prospective ground that includes the historic Lancefield and Chatterbox Trend mines. Focus' priority target is to confirm the extent of gold mineralisation at deposits Beasley Creek and Lancefield Thrust and advance the Sickle, Ida-H and Karridale-Burtville deposits and targets.

Focus also owns the non-core Coolgardie Gold Project, also in the Goldfields, which includes a 1.2Mtpa processing plant at Three Mile Hill. The plant is on care and maintenance.

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Mr Alex Aaltonen, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr is an employee of Focus Minerals Limited. Mr Aaltonen has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.

The Mineral Resource estimates were undertaken by Ms. Hannah Kosovich, an employee of Focus Minerals. Ms Hannah Kosovich is a member of Australian Institute of Geoscientists and has sufficient experience to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.

Mr Aaltonen and Ms Hannah Kosovich consent to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The Karridale Exploration Target in this announcement was compiled by Mr Alex Aaltonen, who is a member of AusIMM and, employee of Focus Minerals. Mr Aaltonen has sufficient experience with the style of mineralisation/deposit under consideration to qualify as a Competent Person as defined in the 2012 Edition of the *Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves*.

Mr Aaltonen consents the release of the Karridale Exploration Target for the form and context as it appears.

JORC Code, 2012 Edition - Table 1 Karridale

Section 1 Sampling Techniques and Data

Criteria	Explanation
	RC Sampling
Sampling techniques	 RC percussion drill chips were collected through a cone splitter from the drill rig. The bulk sample from drilling was placed in neatly rows on the ground with the nominal 2-3kg calico split sub-sample placed on top of the corresponding sample. RC chips were passed through a cone splitter to achieve a nominal sample weight of approximately 3kg. The splitter was levelled at the beginning of each hole. In the 2018 and 2019 drilling geological logging defined whether a sample was to be submitted as a 1m cone split sample or a 4m spear composite sample. Split samples (1m) were transferred to sample numbered calico bags for submission to the laboratory. Composite samples were spear sampled using a spear to obtain a small representative sample and deposited into numbered sample bags. Previous drill programs from 2017 and earlier have submitted 1m samples for assay taken from the drill rig for the entire hole length with no compositing of samples. Diamond Core Sampling Diamond core was collected into standard plastic core trays. Down hole depths were marked onto wooden core blocks and stored in the trays. The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of mineralisation and/or alteration. Whenever possible the cut-line was drawn parallel to and close to the down hole core orientation line to ensure the cut-line was consistent over the hole. The core was cut in half using an automatic core saw, with half-core samples submitted for analysis.
Drilling techniques	 RC drilling was conducted using a 5 3/8 face sampling hammer for RC drilling. At hole completion, downhole surveys for RC holes were completed at a 10m interval by using True North Seeking Gyro tool. Otherwise a single shot Eastman camera downhole survey was used either "in-rod" or "open hole". Diamond core was drilled at NQ2/HQ size. All drill core was oriented where competent by the drilling contractor using an Ezy-mark or similar system.
Drill sample recovery	 RC sample recovery was recorded by a visual estimate during the logging process. DD sample recovery was measured and calculated (core loss) during the logging process. DD core had generally good to excellent recovery.
Logging	 All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure, texture and any other notable features that are present. All data is entered directly into validating digital software directly. All core samples were oriented, marked into metre intervals and compared to the depth measurements on the core blocks. Any loss of core was noted and recorded in the drilling database. Diamond core was also logged for structure and geologically logged using the same process as the RC chips. Diamond core was photographed wet and dry one core tray at a time using a standardised photography jig. Samples from RC holes were archived in standard 20m plastic chip trays and photographed. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present. The logging information was transferred into the company's drilling database once the log was complete. The entire length of all holes is geologically logged
Sub-sampling techniques and sample preparation	 All samples were collected in a pre-numbered calico bag bearing a unique sample ID. Core samples were taken from half core, cut using an Almonte automatic core saw. The remainder of the core was retained in core trays tagged with a hole number and metre mark. At the assay laboratory, all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm. Gold analysis was by a 30 to 50g Fire Assay with an ICP-OES or AAS Finish. Other multi-element (not gold) analysis utilised 40gm sub-samples.

Criteria	Explanation
	 Different laboratories have been used over the years. Most recently Jinning Testing & Inspection completed the assay testing, with sample preparation completed in Kalgoorlie or Perth and analysis completed in Perth for the 2018/2019 drilling. Previously drill samples were submitted to Kalgoorlie Assay Laboratories for sample preparation and analysis. The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion. QAQC checks involved inserting standards 1:20 samples (with minimum 3 standards every submission). Duplicate samples for RC were achieved by producing 2 samples for each metre one hole every 20th hole drilled and submitting all produced samples. The remaining bulk sample was also bagged to plastic bags for retention and further checks. Diamond core field duplicates were not taken. Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out. The sample sizes were appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration.
Quality of assay data and laboratory tests	 The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample. No geophysical tools, spectrometers or handheld XRF instruments were used for assay determination. The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances and where they didn't further analysis was conducted as appropriate. Umpire samples are routinely collected and will be submitted to independent ISO certified labs Additional bulk mineralised RC samples have also been collected and retained for follow up QAQC, metallurgical and sample characterisation purposes
Verification of sampling and assaying	 Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process. Primary logging data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project.
Location of data points	 Drill collars are surveyed after completion using a DGPS instrument. A True North Seeking Gyro was predominantly used for downhole surveys or an Eastman Single Shot camera. All coordinates and bearings use the MGA94 Zone 51 grid system. FML utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments. After completion the drill hole locations were picked up by DGPS with accuracy of +/-20cm.
Data spacing and distribution	 Drill spacing at Karridale varies from 40m x 40m to 80m x 80m on the wider fringes of the known deposit.
Orientation of data in relation to geological structure	 Drilling was designed based on known/developing geological models, field mapping, verified historical data, cross-sectional and long-sectional interpretation. Where achievable, drill holes were oriented at right angles to strike of deposit, with dip optimised for drill capabilities and the dip of the ore body. True widths have not been calculated for reported intersections. However, drill orientation was consistently optimised to approximate true width of mineralisation.
Sample security	 All samples were reconciled against the sample submission with any omissions or variations reported to FML. All samples were bagged in a tied numbered calico bag. The bags were placed into plastic green bags with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel at completion of each hole.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria		Explanation						
Mineral tenement and land tenure status	 The drilling was conducted on tenements E38/2032, M38/008, M38/089, M38/261 and M38/073 +91% owned by Focus Minerals (Laverton) Pty Ltd. In JV with Goldfields (GSM). Exploration expenditure by FML is continuing to increase the proportion of the JV tenement held by FML. All tenements are in good standing. There are currently no registered Native Title claims over the Laverton project areas. 							
Exploration done by other parties	 Karridale was originally mined by small scale shafts targeting high grade veins. The shallow shafts and drives are developed throughout the area and an excellent vector within the interpreted Karridale Footprint Karridale has been explored by several parties including Sons of Gwalia and Crescent. Sons of Gwalia explored for oxide resources and mined an oxide resource at Burtville which was later followed into hard rock by a Crescent. Exploration by Focus at Karridale targets the interpreted mineralised footprint which is based on: historical mining, structural interpretation, geological model, geophysics and continued success with infill of 2018 320m x 160m and 160m x 80m footprint drilling. 							
Geology	 The Karridale mineralisation is hosted in an interpreted half graben on the SE side of a large Granodiorite intrusion. The half graben is composed from NW to SE and up sequence by: Gabbro overlain by basalt, overlain by structurally thrust stacked intermediate volcanic tuff and interbedded sandstone-black shale. The thrusts have shallow NW dip and have been locally intruded by gabbro and feldspar-hornblende porphyry sills. The mineralisation is hosted primarily by the shallow NW dipping shears and by some N-S subvertical veins. 							
Drill hole information	• Drill Holes that have been prevalues Drill Hole Number 19KARC001 - 008 18KARC065, 068, 077, 080-085, 104-107, 117,119, 128 18KARC004,007-010 KARC129, 135 KARC207, 216, 220, 227, 235, 278, 279, 280, 282, 283, 284 KARD202, 281 KARC242 - 262, 264-277 KARD281 KARC282 - 284 KARC228, 230 - 240 KARC194 - 201, 203 - 226, 229 KARC169 - 193 KARC155 KARC156 - 157 KARD158 KARC159 KARD158 KARC159 KARD154 KARC138 - 143 KARC138 - 143 KARC145 - 146 KARC123 - 126 KARC130 - 134	ASX Release Title More High Grade Intercepts at Laverton Gold Project Focus Advances its Karridale and Burtville Projects Exploration Progress Update Maiden Mineral Resource for Karridale Deposit Operational Update Drilling Update Karridale RC Programme Progress Report for Coolgardie and Laverton Focus Minerals Ltd Exploration Update Evidence Grows for Significant Gold System at Karridale Karridale Exploration Update: Exciting Signs Laverton Exploration Update Quarterly Activities Report ASX Release Date ASX Release Date 29 April 2019 2019 2019 2019 2019 2019 2019 2019						

Criteria	Explanation							
	Hole ID	Easting GDA94z51	Northing GDA94z51	RL	Total Depth (m)	Azimuth (Collar)	Dip (Collar)	Tenement (Collar Position)
	18KARC006	465793	6815263	468.32	140	147.03	-60.51	M3800008
	18KARC022	466049	6815450	470.64	150	150.69	-60.21	E3802032
	18KARC023	465647	6815323	468.79	210	150.41	-62.08	M3800008
	18KARC063	465896	6815247	469.31	102	150	-55	M3800089
	18KARC064	465987	6815263	469.43	45	145	-60	M3800089
	18KARC066	465919	6815215	469.29	70	151.41	-54.3	M3800089
	18KARC070	466116	6815358	469.52	78	151.35	-60.81	M3800089
	18KARC071	466098	6815489	470.45	126	155.18	-59.87	E3802032
	18KARC074	465906	6815227	469.23	84	145	-60	M3800089
	18KARC075	465934	6815229	469.39	72	148.03	-59.44	M3800089
	18KARC076	465924	6815239	469.43	84	147.88	-60.08	M3800089
	18KARC078	466069	6815554	470.25	153	153.01	-60.61	E3802032
	18KARC087	465952	6815292	469.38	57	148.83	-60.19	M3800089
	18KARC089	465970	6815250	469.36	48	148.91	-60.17	M3800089
	18KARC090	465977	6815273	469.35	54	149.07	-60.94	M3800089
	18KARC091	465946	6815239	469.32	48	148.1	-60.54	M3800089
	18KARC092	465937	6815250	469.43	54	145	-60	M3800089
	18KARC093	465929	6815272	469.45	60	148.43	-60.04	M3800089
	18KARC101	465509	6815872	467.65	162	145.81	-58.28	M3800073
	18KARC102	465711	6816058	467.59	230	148.47	-60.3	M3800073
	18KARC108	466007	6815671	470.27	204	151.71	-60.67	M3800073
	No signification	ant intercepts	were record	led for the	ese holes	S.	l .	
Data aggregation methods		ighted avera	s - mineralise ge grades wit					
Relationship between mineralization widths and intercept lengths	 Holes were drilled orthogonal to mineralisation as much as possible, however the exact relationship between intercept width and true width cannot be estimated exactly in all cases. Furthermore, no intersections are represented as calculated true widths in this report 							
Diagrams	Refer to F	igures and T		of this re	elease ar			uncements for
Balanced reporting	Drilling results are reported in a balanced reporting style. The ASX announcements shows actual locations of holes drilled, and representative sections as appropriate.							
Other substantive exploration data	There is n	o other mate	rial exploration	on data to	report a	t this time.		
Further work	FML antic	ipates additio	onal drilling to	follow up	on enc	ouraging re	esults in L	averton.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	Explanation
Database integrity	 Data was geologically logged electronically; collar and downhole surveys were also received electronically as was the laboratory analysis results. These electronic files were loaded into an acQuire database by the company in-house Database Administrator. Data was routinely extracted to Microsoft Access during the drilling program for validation by the geologist in charge of the project. FML's database is a Microsoft SQL Server database (acQuire), which is case sensitive, relational and normalised to the Third Normal Form. Because of normalisation, the following data integrity categories exist: Entity Integrity: no duplicate rows in a table, eliminated redundancy and chance of error.

Criteria	Explanation
	 Domain Integrity: Enforces valid entries for a given column by restricting the type, the format or a range of values. Referential Integrity: Rows cannot be deleted which are used by other records. User-Defined Integrity: business rules enforced by acQuire and validation codes set
	 up by FML. Additionally, in-house validation scripts are routinely run in acQuire on FML's database and they include the following checks: Missing collar information Missing logging, sampling, downhole survey data and hole diameter
	 Overlapping intervals in geological logging, sampling, down hole surveys Checks for character data in numeric fields Data extracted from the database were validated visually in GEOVIA Surpac software and ARANZ Geo Leapfrog software. Also, when loading the data any errors regarding
Site visits	 missing values and overlaps are highlighted. Alex Aaltonen, the Competent Person for Sections 1 and 2 of Table 1 is FML's General Manager - Exploration and conducts regular site visits. Hannah Kosovich, the Competent Person for Section 3 of Table 1 is FML's Resource
Geological interpretation	 Geologist and visited Karridale region in 2014. All Focus drill holes and historic mining data was used to guide the geological interpretation of the mineralisation. Multi-element geochemistry on sample pulps has allowed a more rigorous 3D geological model to be built. This has improved the understanding of geological controls on gold mineralisation and is guiding future extensional drilling. The Karridale
	 controls on gold mineralisation and is guiding future extensional drining. The Kamdale mineralisation is hosted in an interpreted half graben on the SE side of a large Granodiorite intrusion. The mineralisation is hosted primarily by the shallow NW dipping shears and by some N-S subvertical veins. The logging of quartz veining guided the interpretation particularly of the higher-grade lode, but mineralisation was not restricted to the presence of large-scale quartz
	 veining. The mineralised geological interpretation was completed using Seequent Leapfrog software on a section by section basis. The wireframes were created to capture a "bulked" mineralised vein sets then individual mineralised veins. An approximate 0.5g/t Au value was used to guide the interpretation.
Dimensions	Minor deviation only of the lode geometry was noticed between drill holes along strike and down-dip.
Dimensions	 Mineralisation at the Karridale project area has been interpreted over a 1.1km strike length trending NE and extends from near surface to a depth of 450m below surface. The thickness of the individual quartz veins varies from 0.25m to 6m thick with an average thickness of 2m. However, the wireframed lodes of vein sets varies from more than 20m to only 0.25m thick, with an average thickness of 4m.
Estimation and modelling techniques	 Only RC and Diamond holes drilled by FML were used in the estimation. In total 197 holes were used, 175 RC holes and 22 RC pre-collar with diamond tail (RCDD) holes were used. The drill hole samples were composited to 1m within each domain. This is the
	 dominant sampling interval. Composited assay values of each domain were exported to a text file (.csv) from Leapfrog and imported into Snowden Supervisor for geostatistical analysis.
	A review of histograms, probability plots and mean/variance plots for each domain revealed some outlier sample values.
	Top capping of higher Au values within each domain was carried out with Au values above the cut-off grade reset to the cut-off grade. Different core was used for the ladge on a core as of 100/4 Au value and the largest
	 Different caps were used for the lodes, an average of 10g/t Au was used; the largest cap was 12g/t Au. Variograms were modelled for all lodes except 2, which had too few sample numbers and shared the variogram of a similar orientated lode. A normal scores transformation was applied to the negatively skewed data in each lode. A back-transformation was applied to the variogram model before exporting the variograms in a Surpac readable format.
	GEOVIA Surpac Software was used for the estimation. An Ordinary Kriging (OK) technique was selected using the variograms modelled in Supervisor. Each domain was estimated separately using only its own sample values. No samples were shared between domains (hard boundaries).

Criteria	Explanation								
Oritoria	• M	inimum (6)	and maxim			were selec	ted based o	n a Kriging	
	 Minimum (6) and maximum (20) sample numbers were selected based on a Kriging Neighbourhood analysis in Supervisor. 								
	An elliptical search was used based on range of the Variograms (see table below).								
		Search Search Radius Dimensions (m)		Minimum	Maximum	Maximum samples per			
		Pass	Major	Semi-Major	Minor	samples	samples	hole	
		1	80	80	27	6	20	7	
		2	120	120	40	6	20	7	
		3	160	160	53	4	20	7	
		4	240	240	80	2	20	7	
	 Four search passes were run to fill the block model with estimated Au values. For the core and surrounding main lode, 71% of the blocks were filled on the first pass, 19% on the second and 7% on the third and 3% on the fourth. Block sizes for the model were 20m in Y, 20m in X and 5m in Z direction. Sub celling of the parent blocks was permitted to 5m in the Y direction, 2.5m in the X direction and 1.25m in the Z direction. Sub-blocking was used to best fill the wireframes and inherit the grade of the parent block. No rotation was applied to the orientation of the blocks. Block size is approximately ½ of the average drill hole spacing. The estimate was validated by several methods. An initial visual review was done by comparing estimated blocks and raw drill holes. 							spass, 19% Sub celling direction ames and tation of the	
	• Si	apped drill h wath plots o ere done fo	nole values. of drill hole or the core a	There were walues and es and surroundi	no major difl stimated Au ng main lode	erences. grades by n	or all lodes with the raw and top- erences. Irades by northing, easting and RL s and showed that the estimated		
Moisture				end of the drill					
Cut-off parameters				d on a dry bas		ahaya a 0 6	a/t Au out o	ff and above	
Cut-on parameters				idale have be t	еп геропеа	above a o.o.	g/t Au cut-o	ii anu above	
Mining factors or assumptions	 the 290mRL for open pit. The Karridale deposit would be mined by open pit extraction. 								
Metallurgical factors or assumptions	While no metallurgical test work has been carried out specifically at Karridale, previous production and processing records for the nearby Burtville Pit exist.								
Environmental factors or assumptions	Karridale deposit sits near the previously mined Burtville Pit, with numerous historic workings in the area, including minor underground development at Boomerang.								
Bulk density	 Density values were assigned based on the weathering category. The same density values used in nearby Burtville Pit were applied to the oxide and transitional material. These values were the averages of SG test work that was ongoing over the life of the open cut mining activities. A value of 1.8 was assigned to oxidised blocks and 2.45 for transitional material. An updated value of 2.86 was used in the fresh rock. This figure is the average of all readings taken from 42 diamond core samples at Karridale (mainly basalt, felsic volcanic and volcanic). The water immersion technique was used for these determinations. 								
Classification	 Resources have been classified as Indicated and Inferred based primarily on drilling spacing and geological confidence in the geometry and continuity of the lodes. In addition, various estimation output parameters such as number of samples, search pass, kriging variance, and slope of regression have been used to assist in classification. Shapes were created in Surpac to constrain the model within the main 40m x 80m spaced drilling for Inferred Resource. The small areas drilled at the 40m x 40m spacing has been classified as Indicated. 								
Audits or reviews	• Th	he maiden i terpretation	February 20 of geology	018 Karridale r, estimation r n Seequent.	Resource w	as reviewed	d/critiqued fo	or its	
Discussion of relative accuracy/ confidence				relevant para elates to glob					